目录

TorchVision 对象检测微调教程

创建时间: 2023年12月14日 |上次更新时间:2024 年 6 月 11 日 |上次验证: Nov 05, 2024

在本教程中,我们将微调预训练的 Mask 宾夕法尼亚大学-复旦大学的 R-CNN 模型 行人检测数据库和 分段。它包含 170 张图像,其中包含 345 个行人实例,我们将使用它来 演示如何使用 TorchVision 中的新功能进行训练 自定义数据集上的对象检测和实例分段模型。

注意

本教程仅适用于 torchvision 版本 >=0.16 或 nightly。 如果您使用的是 torchvision<=0.15,请遵循本教程

定义数据集

用于训练对象检测的参考脚本,实例 细分和人员关键点检测可轻松支持 添加新的自定义数据集。数据集应继承自标准类,并实现 和 。__len____getitem__

我们唯一需要的特异性是 dataset 应该返回一个 Tuples:__getitem__

  • image: shape 、 pure tensor 或 PIL 大小的 Image[3, H, W](H, W)

  • target:包含以下字段的 dict

    • boxes形状 : 格式为边界框的坐标,范围从 to 和 to[N, 4]N[x0, y0, x1, y1]0W0H

    • labels, integer of shape :每个边界框的标签。 始终表示 Background 类。[N]0

    • image_id, int:图片标识符。它应该是 在数据集中的所有图像之间是唯一的,并在 评估

    • area, float of shape :边界框的面积。这是用的 在使用 COCO 指标进行评估期间,将指标分开 小、中、大箱子之间的分数。[N]

    • iscrowd, uint8 的 shape : instances 的实例将为 在评估过程中被忽略。[N]iscrowd=True

    • (可选) , shape :分段 每个对象的掩码masks[N, H, W]

如果您的数据集符合上述要求,那么它将适用于两者 参考脚本中的训练和评估代码。评估代码将使用脚本,这些脚本可以从中安装 。pycocotoolspip install pycocotools

注意

对于 Windows,请使用 command 从 gautamchitnis 安装pycocotools

pip install git+https://github.com/gautamchitnis/cocoapi.git@cocodataset-master#subdirectory=PythonAPI

关于 .该模型将 class 视为 background。如果您的数据集不包含 background 类,则 你不应该在你的 .例如,假设你只有两个类 catdog,你可以 define (not ) 来表示 cats 和 to represent dogs。因此,例如,如果其中一个图像同时具有 类,则 Tensor 应如下所示。labels00labels102labels[1, 2]

此外,如果您想在训练期间使用纵横比分组 (以便每个批次仅包含具有相似纵横比的图像), 然后,建议还实现一个方法,该方法返回图像的高度和宽度。如果此 方法,我们通过 查询数据集的所有元素,这会将图像加载到内存中,并且比 if 提供了自定义方法。get_height_and_width__getitem__

为 PennFudan 编写自定义数据集

让我们为 PennFudan 数据集编写一个数据集。首先,让我们下载数据集,然后 解压缩 zip 文件

wget https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip -P data
cd data && unzip PennFudanPed.zip

我们有以下文件夹结构:

PennFudanPed/
  PedMasks/
    FudanPed00001_mask.png
    FudanPed00002_mask.png
    FudanPed00003_mask.png
    FudanPed00004_mask.png
    ...
  PNGImages/
    FudanPed00001.png
    FudanPed00002.png
    FudanPed00003.png
    FudanPed00004.png

以下是一对图像和分割蒙版的一个示例

import matplotlib.pyplot as plt
from torchvision.io import read_image


image = read_image("data/PennFudanPed/PNGImages/FudanPed00046.png")
mask = read_image("data/PennFudanPed/PedMasks/FudanPed00046_mask.png")

plt.figure(figsize=(16, 8))
plt.subplot(121)
plt.title("Image")
plt.imshow(image.permute(1, 2, 0))
plt.subplot(122)
plt.title("Mask")
plt.imshow(mask.permute(1, 2, 0))
图像、蒙版
<matplotlib.image.AxesImage object at 0x7f4edba7ae30>

所以每张图像都有一个对应的 Segmentation Mask 的 Segmentation Mask 中,每种颜色对应一个不同的实例。 让我们为这个数据集编写一个类。 在下面的代码中,我们将图像、边界框和蒙版包装到类中,以便我们能够应用 torchvision 内置转换(新的 Transforms API) 对于给定的对象检测和分段任务。 即,图像张量将被 包裹到 、边界框和 掩码包裹到 。 与子类一样,包装的对象也是张量并继承普通 API。有关 torchvision 的更多信息,请参阅此文档tv_tensors

import os
import torch

from torchvision.io import read_image
from torchvision.ops.boxes import masks_to_boxes
from torchvision import tv_tensors
from torchvision.transforms.v2 import functional as F


class PennFudanDataset(torch.utils.data.Dataset):
    def __init__(self, root, transforms):
        self.root = root
        self.transforms = transforms
        # load all image files, sorting them to
        # ensure that they are aligned
        self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
        self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))

    def __getitem__(self, idx):
        # load images and masks
        img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
        mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
        img = read_image(img_path)
        mask = read_image(mask_path)
        # instances are encoded as different colors
        obj_ids = torch.unique(mask)
        # first id is the background, so remove it
        obj_ids = obj_ids[1:]
        num_objs = len(obj_ids)

        # split the color-encoded mask into a set
        # of binary masks
        masks = (mask == obj_ids[:, None, None]).to(dtype=torch.uint8)

        # get bounding box coordinates for each mask
        boxes = masks_to_boxes(masks)

        # there is only one class
        labels = torch.ones((num_objs,), dtype=torch.int64)

        image_id = idx
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
        # suppose all instances are not crowd
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)

        # Wrap sample and targets into torchvision tv_tensors:
        img = tv_tensors.Image(img)

        target = {}
        target["boxes"] = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=F.get_size(img))
        target["masks"] = tv_tensors.Mask(masks)
        target["labels"] = labels
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        return len(self.imgs)

这就是数据集的全部内容。现在让我们定义一个可以执行 预测。

定义模型

在本教程中,我们将使用 Mask R-CNN,它基于 Faster R-CNN 之上。更快的 R-CNN 是一个 预测潜在边界框和类分数的模型 对象。

../_static/img/tv_tutorial/tv_image03.png

掩码 R-CNN 添加了一个额外的分支 转换为 Faster R-CNN,它还预测每个 实例。

../_static/img/tv_tutorial/tv_image04.png

有两种常见的 人们可能想要的情况 以修改 TorchVision Model Zoo 中的可用模型之一。第一个 是当我们想要从预先训练的模型开始,然后微调 最后一层。另一种是当我们想替换 模型替换为其他模型(例如,为了更快地进行预测)。

让我们看看在以下部分中我们将如何执行一个或另一个操作。

1 - 从预训练模型进行微调

假设您想从 COCO 上预训练的模型开始 并希望针对您的特定类对其进行微调。这是一个可能的 方法:

import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor

# load a model pre-trained on COCO
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights="DEFAULT")

# replace the classifier with a new one, that has
# num_classes which is user-defined
num_classes = 2  # 1 class (person) + background
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
Downloading: "https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth

  0%|          | 0.00/160M [00:00<?, ?B/s]
 27%|##6       | 42.8M/160M [00:00<00:00, 448MB/s]
 54%|#####4    | 86.8M/160M [00:00<00:00, 456MB/s]
 82%|########1 | 131M/160M [00:00<00:00, 458MB/s]
100%|##########| 160M/160M [00:00<00:00, 457MB/s]

2 - 修改模型以添加不同的主干

import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator

# load a pre-trained model for classification and return
# only the features
backbone = torchvision.models.mobilenet_v2(weights="DEFAULT").features
# ``FasterRCNN`` needs to know the number of
# output channels in a backbone. For mobilenet_v2, it's 1280
# so we need to add it here
backbone.out_channels = 1280

# let's make the RPN generate 5 x 3 anchors per spatial
# location, with 5 different sizes and 3 different aspect
# ratios. We have a Tuple[Tuple[int]] because each feature
# map could potentially have different sizes and
# aspect ratios
anchor_generator = AnchorGenerator(
    sizes=((32, 64, 128, 256, 512),),
    aspect_ratios=((0.5, 1.0, 2.0),)
)

# let's define what are the feature maps that we will
# use to perform the region of interest cropping, as well as
# the size of the crop after rescaling.
# if your backbone returns a Tensor, featmap_names is expected to
# be [0]. More generally, the backbone should return an
# ``OrderedDict[Tensor]``, and in ``featmap_names`` you can choose which
# feature maps to use.
roi_pooler = torchvision.ops.MultiScaleRoIAlign(
    featmap_names=['0'],
    output_size=7,
    sampling_ratio=2
)

# put the pieces together inside a Faster-RCNN model
model = FasterRCNN(
    backbone,
    num_classes=2,
    rpn_anchor_generator=anchor_generator,
    box_roi_pool=roi_pooler
)
Downloading: "https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/mobilenet_v2-7ebf99e0.pth

  0%|          | 0.00/13.6M [00:00<?, ?B/s]
100%|##########| 13.6M/13.6M [00:00<00:00, 381MB/s]

PennFudan 数据集的目标检测和实例分割模型

在我们的例子中,我们希望从预训练模型进行微调,因为 我们的数据集非常小,因此我们将遵循第 1 种方法。

在这里,我们还想计算实例分段掩码,因此我们将 正在使用 Mask R-CNN:

import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor


def get_model_instance_segmentation(num_classes):
    # load an instance segmentation model pre-trained on COCO
    model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights="DEFAULT")

    # get number of input features for the classifier
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    # replace the pre-trained head with a new one
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    # now get the number of input features for the mask classifier
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    # and replace the mask predictor with a new one
    model.roi_heads.mask_predictor = MaskRCNNPredictor(
        in_features_mask,
        hidden_layer,
        num_classes
    )

    return model

就是这样,这将准备好接受培训和评估 在您的自定义数据集上。model

把所有东西放在一起

在 中,我们有许多辅助函数 简化检测模型的训练和评估。在这里,我们将使用 和 。 只需将下的所有内容下载到您的文件夹中并在此处使用它们。 在 Linux 上(如果有),您可以使用以下命令下载它们:references/detection/references/detection/engine.pyreferences/detection/utils.pyreferences/detectionwget

os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/engine.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/utils.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/coco_utils.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/coco_eval.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/transforms.py")
0

从 v0.15.0 开始,torchvision 提供了新的 Transforms API,可以轻松地为对象检测和分割任务编写数据增强管道。

让我们编写一些用于数据增强的辅助函数 / 转型:

from torchvision.transforms import v2 as T


def get_transform(train):
    transforms = []
    if train:
        transforms.append(T.RandomHorizontalFlip(0.5))
    transforms.append(T.ToDtype(torch.float, scale=True))
    transforms.append(T.ToPureTensor())
    return T.Compose(transforms)

测试方法(可选)forward()

在迭代数据集之前,最好先看看模型是什么 expects 期间对样本数据进行训练和推理。

import utils

model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights="DEFAULT")
dataset = PennFudanDataset('data/PennFudanPed', get_transform(train=True))
data_loader = torch.utils.data.DataLoader(
    dataset,
    batch_size=2,
    shuffle=True,
    collate_fn=utils.collate_fn
)

# For Training
images, targets = next(iter(data_loader))
images = list(image for image in images)
targets = [{k: v for k, v in t.items()} for t in targets]
output = model(images, targets)  # Returns losses and detections
print(output)

# For inference
model.eval()
x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
predictions = model(x)  # Returns predictions
print(predictions[0])
{'loss_classifier': tensor(0.0808, grad_fn=<NllLossBackward0>), 'loss_box_reg': tensor(0.0284, grad_fn=<DivBackward0>), 'loss_objectness': tensor(0.0186, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>), 'loss_rpn_box_reg': tensor(0.0034, grad_fn=<DivBackward0>)}
{'boxes': tensor([], size=(0, 4), grad_fn=<StackBackward0>), 'labels': tensor([], dtype=torch.int64), 'scores': tensor([], grad_fn=<IndexBackward0>)}

现在让我们编写执行训练的 main 函数和 验证:

from engine import train_one_epoch, evaluate

# train on the GPU or on the CPU, if a GPU is not available
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

# our dataset has two classes only - background and person
num_classes = 2
# use our dataset and defined transformations
dataset = PennFudanDataset('data/PennFudanPed', get_transform(train=True))
dataset_test = PennFudanDataset('data/PennFudanPed', get_transform(train=False))

# split the dataset in train and test set
indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-50])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])

# define training and validation data loaders
data_loader = torch.utils.data.DataLoader(
    dataset,
    batch_size=2,
    shuffle=True,
    collate_fn=utils.collate_fn
)

data_loader_test = torch.utils.data.DataLoader(
    dataset_test,
    batch_size=1,
    shuffle=False,
    collate_fn=utils.collate_fn
)

# get the model using our helper function
model = get_model_instance_segmentation(num_classes)

# move model to the right device
model.to(device)

# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
    params,
    lr=0.005,
    momentum=0.9,
    weight_decay=0.0005
)

# and a learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(
    optimizer,
    step_size=3,
    gamma=0.1
)

# let's train it just for 2 epochs
num_epochs = 2

for epoch in range(num_epochs):
    # train for one epoch, printing every 10 iterations
    train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
    # update the learning rate
    lr_scheduler.step()
    # evaluate on the test dataset
    evaluate(model, data_loader_test, device=device)

print("That's it!")
Downloading: "https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth

  0%|          | 0.00/170M [00:00<?, ?B/s]
 25%|##5       | 42.8M/170M [00:00<00:00, 448MB/s]
 52%|#####1    | 87.5M/170M [00:00<00:00, 460MB/s]
 78%|#######7  | 132M/170M [00:00<00:00, 463MB/s]
100%|##########| 170M/170M [00:00<00:00, 462MB/s]
/var/lib/workspace/intermediate_source/engine.py:30: FutureWarning:

`torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.

Epoch: [0]  [ 0/60]  eta: 0:00:23  lr: 0.000090  loss: 4.9024 (4.9024)  loss_classifier: 0.4325 (0.4325)  loss_box_reg: 0.1060 (0.1060)  loss_mask: 4.3588 (4.3588)  loss_objectness: 0.0028 (0.0028)  loss_rpn_box_reg: 0.0023 (0.0023)  time: 0.3958  data: 0.0135  max mem: 2430
Epoch: [0]  [10/60]  eta: 0:00:11  lr: 0.000936  loss: 1.7743 (2.7696)  loss_classifier: 0.4134 (0.3553)  loss_box_reg: 0.3051 (0.2540)  loss_mask: 0.9491 (2.1320)  loss_objectness: 0.0218 (0.0214)  loss_rpn_box_reg: 0.0056 (0.0069)  time: 0.2267  data: 0.0151  max mem: 2594
Epoch: [0]  [20/60]  eta: 0:00:08  lr: 0.001783  loss: 0.8078 (1.7882)  loss_classifier: 0.2145 (0.2678)  loss_box_reg: 0.2062 (0.2328)  loss_mask: 0.3990 (1.2594)  loss_objectness: 0.0134 (0.0202)  loss_rpn_box_reg: 0.0076 (0.0080)  time: 0.2064  data: 0.0154  max mem: 2628
Epoch: [0]  [30/60]  eta: 0:00:06  lr: 0.002629  loss: 0.6568 (1.4240)  loss_classifier: 0.1409 (0.2251)  loss_box_reg: 0.2294 (0.2425)  loss_mask: 0.2605 (0.9280)  loss_objectness: 0.0122 (0.0186)  loss_rpn_box_reg: 0.0101 (0.0099)  time: 0.2106  data: 0.0163  max mem: 2772
Epoch: [0]  [40/60]  eta: 0:00:04  lr: 0.003476  loss: 0.5629 (1.2055)  loss_classifier: 0.0928 (0.1906)  loss_box_reg: 0.2512 (0.2357)  loss_mask: 0.2267 (0.7537)  loss_objectness: 0.0076 (0.0156)  loss_rpn_box_reg: 0.0119 (0.0098)  time: 0.2101  data: 0.0167  max mem: 2772
Epoch: [0]  [50/60]  eta: 0:00:02  lr: 0.004323  loss: 0.3608 (1.0399)  loss_classifier: 0.0590 (0.1624)  loss_box_reg: 0.1578 (0.2174)  loss_mask: 0.1602 (0.6378)  loss_objectness: 0.0019 (0.0130)  loss_rpn_box_reg: 0.0071 (0.0093)  time: 0.2051  data: 0.0161  max mem: 2772
Epoch: [0]  [59/60]  eta: 0:00:00  lr: 0.005000  loss: 0.3463 (0.9410)  loss_classifier: 0.0383 (0.1445)  loss_box_reg: 0.1258 (0.2049)  loss_mask: 0.1596 (0.5712)  loss_objectness: 0.0015 (0.0115)  loss_rpn_box_reg: 0.0064 (0.0089)  time: 0.2012  data: 0.0153  max mem: 2772
Epoch: [0] Total time: 0:00:12 (0.2094 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:04  model_time: 0.0785 (0.0785)  evaluator_time: 0.0074 (0.0074)  time: 0.0988  data: 0.0124  max mem: 2772
Test:  [49/50]  eta: 0:00:00  model_time: 0.0420 (0.0571)  evaluator_time: 0.0049 (0.0072)  time: 0.0641  data: 0.0097  max mem: 2772
Test: Total time: 0:00:03 (0.0755 s / it)
Averaged stats: model_time: 0.0420 (0.0571)  evaluator_time: 0.0049 (0.0072)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.645
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.984
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.854
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.288
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.622
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.282
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.699
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.699
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.367
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.692
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.709
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.669
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.975
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.793
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.394
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.685
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.290
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.720
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.724
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.633
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.658
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.734
Epoch: [1]  [ 0/60]  eta: 0:00:11  lr: 0.005000  loss: 0.2605 (0.2605)  loss_classifier: 0.0164 (0.0164)  loss_box_reg: 0.0640 (0.0640)  loss_mask: 0.1767 (0.1767)  loss_objectness: 0.0001 (0.0001)  loss_rpn_box_reg: 0.0032 (0.0032)  time: 0.1859  data: 0.0200  max mem: 2772
Epoch: [1]  [10/60]  eta: 0:00:10  lr: 0.005000  loss: 0.3323 (0.3736)  loss_classifier: 0.0424 (0.0505)  loss_box_reg: 0.1275 (0.1469)  loss_mask: 0.1594 (0.1662)  loss_objectness: 0.0008 (0.0017)  loss_rpn_box_reg: 0.0077 (0.0082)  time: 0.2085  data: 0.0170  max mem: 2772
Epoch: [1]  [20/60]  eta: 0:00:08  lr: 0.005000  loss: 0.3343 (0.3471)  loss_classifier: 0.0412 (0.0440)  loss_box_reg: 0.1203 (0.1213)  loss_mask: 0.1660 (0.1731)  loss_objectness: 0.0009 (0.0016)  loss_rpn_box_reg: 0.0068 (0.0070)  time: 0.2051  data: 0.0155  max mem: 2772
Epoch: [1]  [30/60]  eta: 0:00:06  lr: 0.005000  loss: 0.3024 (0.3285)  loss_classifier: 0.0358 (0.0442)  loss_box_reg: 0.0852 (0.1143)  loss_mask: 0.1521 (0.1616)  loss_objectness: 0.0009 (0.0015)  loss_rpn_box_reg: 0.0045 (0.0068)  time: 0.2044  data: 0.0155  max mem: 2772
Epoch: [1]  [40/60]  eta: 0:00:04  lr: 0.005000  loss: 0.2724 (0.3243)  loss_classifier: 0.0425 (0.0435)  loss_box_reg: 0.0852 (0.1082)  loss_mask: 0.1456 (0.1638)  loss_objectness: 0.0012 (0.0016)  loss_rpn_box_reg: 0.0051 (0.0071)  time: 0.2043  data: 0.0161  max mem: 2772
Epoch: [1]  [50/60]  eta: 0:00:02  lr: 0.005000  loss: 0.2579 (0.3127)  loss_classifier: 0.0328 (0.0416)  loss_box_reg: 0.0590 (0.1009)  loss_mask: 0.1590 (0.1619)  loss_objectness: 0.0016 (0.0017)  loss_rpn_box_reg: 0.0040 (0.0066)  time: 0.2028  data: 0.0151  max mem: 2772
Epoch: [1]  [59/60]  eta: 0:00:00  lr: 0.005000  loss: 0.2166 (0.2985)  loss_classifier: 0.0293 (0.0406)  loss_box_reg: 0.0522 (0.0942)  loss_mask: 0.1260 (0.1557)  loss_objectness: 0.0008 (0.0016)  loss_rpn_box_reg: 0.0035 (0.0063)  time: 0.2050  data: 0.0157  max mem: 2772
Epoch: [1] Total time: 0:00:12 (0.2046 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:02  model_time: 0.0410 (0.0410)  evaluator_time: 0.0038 (0.0038)  time: 0.0579  data: 0.0126  max mem: 2772
Test:  [49/50]  eta: 0:00:00  model_time: 0.0396 (0.0405)  evaluator_time: 0.0030 (0.0040)  time: 0.0544  data: 0.0096  max mem: 2772
Test: Total time: 0:00:02 (0.0556 s / it)
Averaged stats: model_time: 0.0396 (0.0405)  evaluator_time: 0.0030 (0.0040)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.767
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.986
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.933
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.378
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.702
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.783
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.810
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.810
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.792
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.822
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.731
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.980
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.899
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.421
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.575
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.749
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.319
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.777
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.777
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.533
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.725
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.789
That's it!

因此,经过一个 epoch 的训练,我们获得了 COCO 风格的 mAP > 50,并且 掩码 mAP 为 65。

但预测是什么样的呢?让我们在 数据集并验证

import matplotlib.pyplot as plt

from torchvision.utils import draw_bounding_boxes, draw_segmentation_masks


image = read_image("data/PennFudanPed/PNGImages/FudanPed00046.png")
eval_transform = get_transform(train=False)

model.eval()
with torch.no_grad():
    x = eval_transform(image)
    # convert RGBA -> RGB and move to device
    x = x[:3, ...].to(device)
    predictions = model([x, ])
    pred = predictions[0]


image = (255.0 * (image - image.min()) / (image.max() - image.min())).to(torch.uint8)
image = image[:3, ...]
pred_labels = [f"pedestrian: {score:.3f}" for label, score in zip(pred["labels"], pred["scores"])]
pred_boxes = pred["boxes"].long()
output_image = draw_bounding_boxes(image, pred_boxes, pred_labels, colors="red")

masks = (pred["masks"] > 0.7).squeeze(1)
output_image = draw_segmentation_masks(output_image, masks, alpha=0.5, colors="blue")


plt.figure(figsize=(12, 12))
plt.imshow(output_image.permute(1, 2, 0))
TorchVision 教程
<matplotlib.image.AxesImage object at 0x7f4edb52d7b0>

结果看起来不错!

结束语

在本教程中,您学习了如何创建自己的培训 自定义数据集上的对象检测模型的管道。为 那么,您编写了一个类,该类返回 图像以及 Ground Truth 框和分割掩码。您还 利用了在 COCO train2017 上预先训练的 Mask R-CNN 模型,以便 对这个新数据集执行迁移学习。

有关更完整的示例,包括多计算机/多 GPU training 中,请检查 ,它存在于 TorchVision 存储库。references/detection/train.py

脚本总运行时间:(0 分 46.025 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源