目录

了解基础知识 ||快速入门 ||张量 ||数据集和数据加载器 ||变换 ||构建模型 ||Autograd ||优化 ||保存并加载模型

构建神经网络

创建时间: Feb 09, 2021 |上次更新时间:2024 年 1 月 16 日 |上次验证时间:未验证

神经网络由对数据执行操作的层/模块组成。 torch.nn 命名空间提供了您需要的所有构建块 构建您自己的神经网络。PyTorch 中的每个模块都对 nn.模块。 神经网络本身是一个由其他模块(层)组成的模块。这种嵌套结构允许 轻松构建和管理复杂的架构。

在以下部分中,我们将构建一个神经网络来对 FashionMNIST 数据集中的图像进行分类。

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

获取用于训练的设备

我们希望能够在 GPU 或 MPS 等硬件加速器上训练我们的模型。 如果可用。让我们检查一下 torch.cudatorch.backends.mps 是否可用,否则我们使用 CPU。

device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps"
    if torch.backends.mps.is_available()
    else "cpu"
)
print(f"Using {device} device")
Using cuda device

定义类

我们通过子类化 来定义我们的神经网络,并且 在 中初始化神经网络层。每个子类都实现了 对方法中输入数据的操作。nn.Module__init__nn.Moduleforward

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

我们创建一个 的实例 ,并将其移动到 中,然后打印 它的结构。NeuralNetworkdevice

model = NeuralNetwork().to(device)
print(model)
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)

要使用该模型,我们将输入数据传递给它。这将执行模型的 , 以及一些后台操作。 不要直接打电话!forwardmodel.forward()

在输入上调用模型将返回一个二维张量,其中 dim=0 对应于每个类的 10 个原始预测值的每个输出,dim=1 对应于每个输出的单个值。 我们通过模块的一个实例传递预测概率来获得预测概率。nn.Softmax

X = torch.rand(1, 28, 28, device=device)
logits = model(X)
pred_probab = nn.Softmax(dim=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
Predicted class: tensor([7], device='cuda:0')

模型层

让我们分解 FashionMNIST 模型中的层。为了说明这一点,我们 将获取 3 张大小为 28x28 的图像的示例小批量,并查看它会发生什么变化 我们通过网络传递它。

input_image = torch.rand(3,28,28)
print(input_image.size())
torch.Size([3, 28, 28])

nn.扁平 化

我们初始化 nn.拼合图层,将每个 2D 28x28 图像转换为包含 784 个像素值的连续数组 ( 保持 Minibatch 维度(dim=0 时)。

torch.Size([3, 784])

nn.线性

线性层是一个模块,它使用其存储的权重和偏差对输入应用线性变换。

layer1 = nn.Linear(in_features=28*28, out_features=20)
hidden1 = layer1(flat_image)
print(hidden1.size())
torch.Size([3, 20])

nn.ReLU 系列

非线性激活是在模型的输入和输出之间创建复杂的映射。 它们在线性变换后应用,以引入非线性,从而帮助神经网络 学习各种各样的现象。

在这个模型中,我们使用 nn.ReLU 之间的 线性层,但还有其他激活会在模型中引入非线性。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
Before ReLU: tensor([[ 0.4158, -0.0130, -0.1144,  0.3960,  0.1476, -0.0690, -0.0269,  0.2690,
          0.1353,  0.1975,  0.4484,  0.0753,  0.4455,  0.5321, -0.1692,  0.4504,
          0.2476, -0.1787, -0.2754,  0.2462],
        [ 0.2326,  0.0623, -0.2984,  0.2878,  0.2767, -0.5434, -0.5051,  0.4339,
          0.0302,  0.1634,  0.5649, -0.0055,  0.2025,  0.4473, -0.2333,  0.6611,
          0.1883, -0.1250,  0.0820,  0.2778],
        [ 0.3325,  0.2654,  0.1091,  0.0651,  0.3425, -0.3880, -0.0152,  0.2298,
          0.3872,  0.0342,  0.8503,  0.0937,  0.1796,  0.5007, -0.1897,  0.4030,
          0.1189, -0.3237,  0.2048,  0.4343]], grad_fn=<AddmmBackward0>)


After ReLU: tensor([[0.4158, 0.0000, 0.0000, 0.3960, 0.1476, 0.0000, 0.0000, 0.2690, 0.1353,
         0.1975, 0.4484, 0.0753, 0.4455, 0.5321, 0.0000, 0.4504, 0.2476, 0.0000,
         0.0000, 0.2462],
        [0.2326, 0.0623, 0.0000, 0.2878, 0.2767, 0.0000, 0.0000, 0.4339, 0.0302,
         0.1634, 0.5649, 0.0000, 0.2025, 0.4473, 0.0000, 0.6611, 0.1883, 0.0000,
         0.0820, 0.2778],
        [0.3325, 0.2654, 0.1091, 0.0651, 0.3425, 0.0000, 0.0000, 0.2298, 0.3872,
         0.0342, 0.8503, 0.0937, 0.1796, 0.5007, 0.0000, 0.4030, 0.1189, 0.0000,
         0.2048, 0.4343]], grad_fn=<ReluBackward0>)

nn.顺序

nn.Sequential 是有序的 模块的容器。数据按照定义的顺序通过所有模块传递。您可以使用 顺序容器将 .seq_modules

nn.Softmax

神经网络的最后一个线性层返回 logits([-infty, infty] 中的原始值),这些值将传递给 nn.Softmax 模块。logit 将缩放为值 [0, 1] 表示模型对每个类的预测概率。 parameter 指示沿 的值之和必须为 1。dim

模型参数

神经网络中的许多层都是参数化的,即具有相关的权重 以及在训练期间优化的偏差。自动子类化 跟踪模型对象中定义的所有字段,并生成所有参数 可使用您的模型或方法访问。nn.Moduleparameters()named_parameters()

在此示例中,我们遍历每个参数,并打印其大小和值的预览。

print(f"Model structure: {model}\n\n")

for name, param in model.named_parameters():
    print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n")
Model structure: NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)


Layer: linear_relu_stack.0.weight | Size: torch.Size([512, 784]) | Values : tensor([[ 0.0273,  0.0296, -0.0084,  ..., -0.0142,  0.0093,  0.0135],
        [-0.0188, -0.0354,  0.0187,  ..., -0.0106, -0.0001,  0.0115]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.0.bias | Size: torch.Size([512]) | Values : tensor([-0.0155, -0.0327], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.weight | Size: torch.Size([512, 512]) | Values : tensor([[ 0.0116,  0.0293, -0.0280,  ...,  0.0334, -0.0078,  0.0298],
        [ 0.0095,  0.0038,  0.0009,  ..., -0.0365, -0.0011, -0.0221]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.bias | Size: torch.Size([512]) | Values : tensor([ 0.0148, -0.0256], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.weight | Size: torch.Size([10, 512]) | Values : tensor([[-0.0147, -0.0229,  0.0180,  ..., -0.0013,  0.0177,  0.0070],
        [-0.0202, -0.0417, -0.0279,  ..., -0.0441,  0.0185, -0.0268]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.bias | Size: torch.Size([10]) | Values : tensor([ 0.0070, -0.0411], device='cuda:0', grad_fn=<SliceBackward0>)

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源