注意
单击此处下载完整的示例代码
修剪教程¶
创建时间: 2019年7月22日 |上次更新时间:2023 年 11 月 2 日 |上次验证: Nov 05, 2024
作者: Michela Paganini
最先进的深度学习技术依赖于过度参数化的模型 难以部署。相反,生物神经网络是 已知使用高效的稀疏连接。确定最佳 通过减少模型中的参数数量来压缩模型的技术是 重要 为了减少内存、电池和硬件消耗,而无需 牺牲准确性。这反过来又允许您在设备上部署轻量级模型,并保证 隐私与设备上的私有计算。在研究方面,修剪是 用于研究 over-parametrized 和 under-parametized 网络,研究 lucky 的作用 稀疏子网和初始化 (“彩票”)作为破坏性 神经架构搜索技术等。
在本教程中,您将学习如何使用
稀疏化您的神经网络,以及如何扩展它以实现您的
拥有定制的修剪技术。torch.nn.utils.prune
要求¶
"torch>=1.4.0a0+8e8a5e0"
import torch
from torch import nn
import torch.nn.utils.prune as prune
import torch.nn.functional as F
创建模型¶
在本教程中,我们使用 LeNet 架构 LeCun 等人,1998 年。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square conv kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5x5 image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, int(x.nelement() / x.shape[0]))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = LeNet().to(device=device)
检查模块¶
让我们检查 LeNet 模型中的(未修剪的)层。它将包含两个
parameters 和 ,暂时没有缓冲区。conv1
weight
bias
module = model.conv1
print(list(module.named_parameters()))
[('weight', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True)), ('bias', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[]
修剪模块¶
要修剪一个模块(在本例中,我们的 LeNet 的
architecture),首先在 中可用的修剪技术中选择一种(或通过 subclassing 实现您自己的技术)。然后,将模块和参数名称指定为
prune 的 intent 中。最后,使用适当的关键字参数
required by selected pruning technique (所选修剪技术),指定修剪参数。conv1
torch.nn.utils.prune
BasePruningMethod
在此示例中,我们将随机修剪
图层中命名的参数。
该模块作为第一个参数传递给函数; 使用字符串标识符标识该模块中的参数;并指示要 prune 的连接百分比(如果
是介于 0 之间的浮点数。和 1.),或 到
prune (如果它是非负整数)。weight
conv1
name
amount
prune.random_unstructured(module, name="weight", amount=0.3)
Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
修剪的作用是从参数中删除并将其替换为
一个名为 (即附加到
初始参数 )。 存储
张量。未修剪,因此将保持不变。weight
weight_orig
"_orig"
name
weight_orig
bias
print(list(module.named_parameters()))
[('bias', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True)), ('weight_orig', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True))]
将保存由上面选择的修剪技术生成的修剪掩码
作为名为
初始参数 )。weight_mask
"_mask"
name
print(list(module.named_buffers()))
[('weight_mask', tensor([[[[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.]]],
[[[1., 1., 1., 0., 1.],
[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 0., 1., 0.],
[0., 1., 0., 1., 1.]]],
[[[1., 0., 0., 0., 1.],
[1., 0., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 0.]]],
[[[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 1., 0., 1.],
[0., 0., 1., 1., 1.],
[1., 1., 0., 1., 1.]]],
[[[1., 0., 1., 1., 1.],
[1., 1., 0., 0., 0.],
[1., 1., 0., 0., 0.],
[0., 1., 1., 0., 1.],
[1., 0., 0., 0., 1.]]],
[[[1., 0., 1., 0., 1.],
[0., 1., 1., 1., 1.],
[1., 1., 0., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 0., 0., 1., 1.]]]], device='cuda:0'))]
为了使前向传递无需修改即可工作,属性
需要存在。中实现的修剪技术计算权重的修剪版本(通过
将蒙版与原始参数组合在一起)并将它们存储在
属性。请注意,这不再是 的 ,
它现在只是一个属性。weight
torch.nn.utils.prune
weight
module
print(module.weight)
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0000, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0000, 0.0000, 0.0271, 0.0964],
[-0.0282, 0.0000, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0000, -0.0000, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0000, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.0000, 0.0312, 0.1616, 0.0219, -0.0000],
[ 0.0537, -0.0542, 0.0000, 0.1786, 0.0000],
[-0.0000, 0.1155, 0.0000, 0.1016, -0.1219]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.1145, 0.0000, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.0000, -0.0000, -0.0000],
[ 0.1999, 0.0378, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0313, -0.1760, -0.0000, -0.1197],
[ 0.0006, -0.0000, -0.0000, -0.0000, -0.1373]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
grad_fn=<MulBackward0>)
最后,使用 PyTorch 的 .具体来说,当 the 被修剪时,正如我们
在这里完成,它将为每个参数获取一个
与它相关联,该 IP 将被修剪。在这种情况下,由于到目前为止
只修剪了名为 的原始参数,只有一个钩子会被
目前。forward_pre_hooks
module
forward_pre_hook
weight
print(module._forward_pre_hooks)
OrderedDict([(0, <torch.nn.utils.prune.RandomUnstructured object at 0x7fce471ea0b0>)])
为了完整起见,我们现在也可以修剪 the,以查看
更改的 parameters、buffers、hook 和 attributes。
为了尝试另一种修剪技术,这里我们修剪
L1 范数的 bias 中的 3 个最小条目,如 pruning 函数中实现的那样。bias
module
l1_unstructured
prune.l1_unstructured(module, name="bias", amount=3)
Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
我们现在期望命名参数同时包含两个 (从
before) 和 .缓冲区将包括 和 。两个张量的修剪版本将作为
module 属性,并且该模块现在将具有两个 .weight_orig
bias_orig
weight_mask
bias_mask
forward_pre_hooks
print(list(module.named_parameters()))
[('weight_orig', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True)), ('bias_orig', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[('weight_mask', tensor([[[[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.],
[1., 0., 1., 1., 1.],
[1., 0., 0., 1., 1.]]],
[[[1., 1., 1., 0., 1.],
[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 0., 1., 0.],
[0., 1., 0., 1., 1.]]],
[[[1., 0., 0., 0., 1.],
[1., 0., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 0.]]],
[[[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 1., 0., 1.],
[0., 0., 1., 1., 1.],
[1., 1., 0., 1., 1.]]],
[[[1., 0., 1., 1., 1.],
[1., 1., 0., 0., 0.],
[1., 1., 0., 0., 0.],
[0., 1., 1., 0., 1.],
[1., 0., 0., 0., 1.]]],
[[[1., 0., 1., 0., 1.],
[0., 1., 1., 1., 1.],
[1., 1., 0., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 0., 0., 1., 1.]]]], device='cuda:0')), ('bias_mask', tensor([0., 0., 0., 1., 1., 1.], device='cuda:0'))]
print(module.bias)
tensor([ 0.0000, -0.0000, -0.0000, -0.1497, 0.1822, -0.1468], device='cuda:0',
grad_fn=<MulBackward0>)
print(module._forward_pre_hooks)
OrderedDict([(0, <torch.nn.utils.prune.RandomUnstructured object at 0x7fce471ea0b0>), (1, <torch.nn.utils.prune.L1Unstructured object at 0x7fce471e98a0>)])
迭代修剪¶
模块中的相同参数可以多次修剪,使用
各种修剪调用等于
各种蒙版系列应用。
新掩码与旧掩码的组合由 的方法处理。PruningContainer
compute_mask
例如,假设我们现在想要进一步修剪 ,this
沿张量的第 0 个轴(第 0 个轴)使用结构化修剪的时间
对应卷积层的输出通道,并且具有
维数 6 为 ),基于通道的 L2 范数。这可以是
使用函数 with 和 实现。module.weight
conv1
ln_structured
n=2
dim=0
prune.ln_structured(module, name="weight", amount=0.5, n=2, dim=0)
# As we can verify, this will zero out all the connections corresponding to
# 50% (3 out of 6) of the channels, while preserving the action of the
# previous mask.
print(module.weight)
tensor([[[[ 0.0000, 0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000]]],
[[[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, 0.0000, -0.0000]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.0000, 0.0000, -0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, -0.0000, -0.0000, -0.0000]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
grad_fn=<MulBackward0>)
相应的钩子现在将是 类型 ,并将存储
对参数应用的修剪。torch.nn.utils.prune.PruningContainer
weight
[<torch.nn.utils.prune.RandomUnstructured object at 0x7fce471ea0b0>, <torch.nn.utils.prune.LnStructured object at 0x7fce471e9a20>]
序列化修剪后的模型¶
所有相关的张量,包括掩码缓冲区和原始参数
用于计算修剪后的张量存储在模型中,因此如果需要,可以轻松序列化和保存。state_dict
print(model.state_dict().keys())
odict_keys(['conv1.weight_orig', 'conv1.bias_orig', 'conv1.weight_mask', 'conv1.bias_mask', 'conv2.weight', 'conv2.bias', 'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight', 'fc3.bias'])
删除修剪重新参数化¶
要使修剪永久化,请删除以下方面的重新参数化
的 和 ,并删除 、
我们可以使用 中的功能。
请注意,这不会撤消修剪,就像它从未发生过一样。它只是
使其成为永久的,而是通过将参数重新分配给
model 参数。weight_orig
weight_mask
forward_pre_hook
remove
torch.nn.utils.prune
weight
在删除重新参数化之前:
print(list(module.named_parameters()))
[('weight_orig', Parameter containing:
tensor([[[[ 0.1529, 0.1660, -0.0469, 0.1837, -0.0438],
[ 0.0404, -0.0974, 0.1175, 0.1763, -0.1467],
[ 0.1738, 0.0374, 0.1478, 0.0271, 0.0964],
[-0.0282, 0.1542, 0.0296, -0.0934, 0.0510],
[-0.0921, -0.0235, -0.0812, 0.1327, -0.1579]]],
[[[-0.0922, -0.0565, -0.1203, 0.0189, -0.1975],
[ 0.1806, -0.1699, 0.1544, 0.0333, -0.0649],
[ 0.1236, 0.0312, 0.1616, 0.0219, -0.0631],
[ 0.0537, -0.0542, 0.0842, 0.1786, 0.1156],
[-0.0874, 0.1155, 0.0358, 0.1016, -0.1219]]],
[[[-0.1980, -0.0773, -0.1534, 0.1641, 0.0576],
[ 0.0828, 0.0633, -0.0035, 0.1565, -0.1421],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0667, 0.1925, -0.1651, -0.1984]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.1033, -0.1363, 0.1061, -0.0808, 0.1214],
[-0.0475, 0.1144, -0.1554, -0.1009, 0.0610],
[ 0.0423, -0.0510, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0675, -0.0709, -0.1935]]],
[[[-0.1145, 0.0500, -0.0264, -0.1452, 0.0047],
[-0.1366, -0.1697, -0.1101, -0.1750, -0.1273],
[ 0.1999, 0.0378, 0.0616, -0.1865, -0.1314],
[-0.0666, 0.0313, -0.1760, -0.0862, -0.1197],
[ 0.0006, -0.0744, -0.0139, -0.1355, -0.1373]]],
[[[-0.1167, -0.0685, -0.1579, 0.1677, -0.0397],
[ 0.1721, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.1988, 0.0572, -0.0437],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.1033, 0.1615, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True)), ('bias_orig', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[('weight_mask', tensor([[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]],
[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]],
[[[1., 0., 0., 0., 1.],
[1., 0., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 0., 1., 1., 0.]]],
[[[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[1., 1., 1., 0., 1.],
[0., 0., 1., 1., 1.],
[1., 1., 0., 1., 1.]]],
[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]],
[[[1., 0., 1., 0., 1.],
[0., 1., 1., 1., 1.],
[1., 1., 0., 1., 0.],
[1., 1., 1., 1., 1.],
[1., 0., 0., 1., 1.]]]], device='cuda:0')), ('bias_mask', tensor([0., 0., 0., 1., 1., 1.], device='cuda:0'))]
print(module.weight)
tensor([[[[ 0.0000, 0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000]]],
[[[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, 0.0000, -0.0000]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.0000, 0.0000, -0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, -0.0000, -0.0000, -0.0000]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
grad_fn=<MulBackward0>)
删除重新参数化后:
prune.remove(module, 'weight')
print(list(module.named_parameters()))
[('bias_orig', Parameter containing:
tensor([ 0.0503, -0.0860, -0.0219, -0.1497, 0.1822, -0.1468], device='cuda:0',
requires_grad=True)), ('weight', Parameter containing:
tensor([[[[ 0.0000, 0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000]]],
[[[-0.0000, -0.0000, -0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000, 0.0000, -0.0000]]],
[[[-0.1980, -0.0000, -0.0000, 0.0000, 0.0576],
[ 0.0828, 0.0000, -0.0035, 0.1565, -0.0000],
[ 0.0126, -0.1365, 0.0617, -0.0689, 0.0613],
[-0.0417, 0.1659, -0.1185, -0.1193, -0.1193],
[ 0.1799, 0.0000, 0.1925, -0.1651, -0.0000]]],
[[[-0.1565, -0.1345, 0.0810, 0.0716, 0.1662],
[-0.0000, -0.1363, 0.1061, -0.0808, 0.0000],
[-0.0475, 0.1144, -0.1554, -0.0000, 0.0610],
[ 0.0000, -0.0000, 0.1192, 0.1360, -0.1450],
[-0.1068, 0.1831, -0.0000, -0.0709, -0.1935]]],
[[[-0.0000, 0.0000, -0.0000, -0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, 0.0000, 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0000, -0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, -0.0000, -0.0000, -0.0000]]],
[[[-0.1167, -0.0000, -0.1579, 0.0000, -0.0397],
[ 0.0000, 0.0623, -0.1694, 0.1384, -0.0550],
[-0.0767, -0.1660, -0.0000, 0.0572, -0.0000],
[ 0.0779, -0.1641, 0.1485, -0.1468, -0.0345],
[ 0.0418, 0.0000, 0.0000, 0.1822, -0.1586]]]], device='cuda:0',
requires_grad=True))]
print(list(module.named_buffers()))
[('bias_mask', tensor([0., 0., 0., 1., 1., 1.], device='cuda:0'))]
修剪模型中的多个参数¶
通过指定所需的修剪技术和参数,我们可以轻松地 修剪网络中的多个张量,也许根据它们的类型,就像我们 将在此示例中看到。
new_model = LeNet()
for name, module in new_model.named_modules():
# prune 20% of connections in all 2D-conv layers
if isinstance(module, torch.nn.Conv2d):
prune.l1_unstructured(module, name='weight', amount=0.2)
# prune 40% of connections in all linear layers
elif isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name='weight', amount=0.4)
print(dict(new_model.named_buffers()).keys()) # to verify that all masks exist
dict_keys(['conv1.weight_mask', 'conv2.weight_mask', 'fc1.weight_mask', 'fc2.weight_mask', 'fc3.weight_mask'])
全局修剪¶
到目前为止,我们只研究了通常所说的 “局部” 修剪,
即在模型中逐个修剪张量的做法,通过
比较
每个条目都独占该张量中的其他条目。但是,
常见且可能更强大的技术是将模型全部修剪为
一次,通过删除(例如)整个
整个模型,而不是删除每个模型中最低的 20% 的连接
层。这可能会导致每层的修剪百分比不同。
让我们看看如何使用 from 来做到这一点。global_unstructured
torch.nn.utils.prune
model = LeNet()
parameters_to_prune = (
(model.conv1, 'weight'),
(model.conv2, 'weight'),
(model.fc1, 'weight'),
(model.fc2, 'weight'),
(model.fc3, 'weight'),
)
prune.global_unstructured(
parameters_to_prune,
pruning_method=prune.L1Unstructured,
amount=0.2,
)
现在我们可以检查每个修剪后的参数中诱导的稀疏性,这将 每层不等于 20%。但是,全局稀疏性将为 (大约)20%。
print(
"Sparsity in conv1.weight: {:.2f}%".format(
100. * float(torch.sum(model.conv1.weight == 0))
/ float(model.conv1.weight.nelement())
)
)
print(
"Sparsity in conv2.weight: {:.2f}%".format(
100. * float(torch.sum(model.conv2.weight == 0))
/ float(model.conv2.weight.nelement())
)
)
print(
"Sparsity in fc1.weight: {:.2f}%".format(
100. * float(torch.sum(model.fc1.weight == 0))
/ float(model.fc1.weight.nelement())
)
)
print(
"Sparsity in fc2.weight: {:.2f}%".format(
100. * float(torch.sum(model.fc2.weight == 0))
/ float(model.fc2.weight.nelement())
)
)
print(
"Sparsity in fc3.weight: {:.2f}%".format(
100. * float(torch.sum(model.fc3.weight == 0))
/ float(model.fc3.weight.nelement())
)
)
print(
"Global sparsity: {:.2f}%".format(
100. * float(
torch.sum(model.conv1.weight == 0)
+ torch.sum(model.conv2.weight == 0)
+ torch.sum(model.fc1.weight == 0)
+ torch.sum(model.fc2.weight == 0)
+ torch.sum(model.fc3.weight == 0)
)
/ float(
model.conv1.weight.nelement()
+ model.conv2.weight.nelement()
+ model.fc1.weight.nelement()
+ model.fc2.weight.nelement()
+ model.fc3.weight.nelement()
)
)
)
Sparsity in conv1.weight: 4.67%
Sparsity in conv2.weight: 13.92%
Sparsity in fc1.weight: 22.16%
Sparsity in fc2.weight: 12.10%
Sparsity in fc3.weight: 11.31%
Global sparsity: 20.00%
使用自定义修剪函数进行扩展torch.nn.utils.prune
¶
要实现你自己的修剪功能,你可以通过子类化 Base Class 来扩展模块,就像所有其他修剪方法一样。基类
为您实现以下方法:、、、 和 。除了某些特殊情况之外,您不应该
必须为您的新修剪技术重新实现这些方法。
但是,您必须实现(构造函数)、
和 (有关如何计算掩码的说明
对于给定的张量,根据你的修剪逻辑
技术)。此外,您必须指定哪种类型的
修剪此技术可实现(支持的选项为 , , 和 )。这是确定
如何在应用修剪的情况下组合蒙版
迭 代。换句话说,在修剪预修剪的参数时,
当前的修剪技术预计将作用于未修剪的
部分。指定遗嘱
enable 的 (它处理迭代的
应用修剪掩码)来正确识别
参数进行修剪。nn.utils.prune
BasePruningMethod
__call__
apply_mask
apply
prune
remove
__init__
compute_mask
global
structured
unstructured
PRUNING_TYPE
PruningContainer
例如,假设您要实现
技术,该技术会修剪张量中的所有其他条目(或者 – 如果
Tensor 之前已被修剪 – 在剩余的未修剪的
部分)。这将是因为它作用于层中的单个连接,而不是整个
units/channels () 或跨不同参数
().PRUNING_TYPE='unstructured'
'structured'
'global'
class FooBarPruningMethod(prune.BasePruningMethod):
"""Prune every other entry in a tensor
"""
PRUNING_TYPE = 'unstructured'
def compute_mask(self, t, default_mask):
mask = default_mask.clone()
mask.view(-1)[::2] = 0
return mask
现在,要将其应用于 中的 参数,您应该
还提供一个简单的函数来实例化 Method 和
应用它。nn.Module
def foobar_unstructured(module, name):
"""Prunes tensor corresponding to parameter called `name` in `module`
by removing every other entry in the tensors.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called `name+'_mask'` corresponding to the
binary mask applied to the parameter `name` by the pruning method.
The parameter `name` is replaced by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
`name+'_orig'`.
Args:
module (nn.Module): module containing the tensor to prune
name (string): parameter name within `module` on which pruning
will act.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input
module
Examples:
>>> m = nn.Linear(3, 4)
>>> foobar_unstructured(m, name='bias')
"""
FooBarPruningMethod.apply(module, name)
return module
让我们试试吧!
model = LeNet()
foobar_unstructured(model.fc3, name='bias')
print(model.fc3.bias_mask)
tensor([0., 1., 0., 1., 0., 1., 0., 1., 0., 1.])
脚本总运行时间:(0 分 0.281 秒)