目录

使用 Ray Tune 进行超参数优化

创建时间: Aug 31, 2020 |上次更新时间:2024 年 10 月 31 日 |上次验证: Nov 05, 2024

超参数优化可以区分普通模型和高度 准确的一个。通常是简单的事情,例如选择不同的学习率或更改 网络层大小可能会对模型性能产生巨大影响。

幸运的是,有一些工具可以帮助找到最佳的参数组合。Ray Tune 是 分布式超参数优化。Ray Tune 包含最新的超参数搜索 算法,与各种分析库集成,并且原生 通过 Ray 的分布式机器学习引擎支持分布式训练。

在本教程中,我们将向您展示如何将 Ray Tune 集成到 PyTorch 中 training 工作流。我们将从 PyTorch 文档扩展本教程以进行培训 CIFAR10 图像分类器。

如您所见,我们只需要添加一些细微的修改。特别是,我们 必须

  1. 将数据加载和训练包装在 Functions 中,

  2. 使一些网络参数可配置,

  3. 添加检查点(可选),

  4. 并定义模型调整的搜索空间


要运行本教程,请确保以下软件包是 安装:

  • ray[tune]:分布式超参数优化库

  • torchvision:用于数据转换器

设置 / 导入

让我们从导入开始:

from functools import partial
import os
import tempfile
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import random_split
import torchvision
import torchvision.transforms as transforms
from ray import tune
from ray import train
from ray.train import Checkpoint, get_checkpoint
from ray.tune.schedulers import ASHAScheduler
import ray.cloudpickle as pickle

构建 PyTorch 模型需要大多数导入。只有最后一个 导入用于 Ray Tune。

数据加载器

我们将数据加载器包装在它们自己的函数中,并传递一个全局数据目录。 这样,我们可以在不同的 Trial 之间共享数据目录。

def load_data(data_dir="./data"):
    transform = transforms.Compose(
        [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
    )

    trainset = torchvision.datasets.CIFAR10(
        root=data_dir, train=True, download=True, transform=transform
    )

    testset = torchvision.datasets.CIFAR10(
        root=data_dir, train=False, download=True, transform=transform
    )

    return trainset, testset

可配置的神经网络

我们只能调整那些可配置的参数。 在此示例中,我们可以指定 全连接层的层大小:

class Net(nn.Module):
    def __init__(self, l1=120, l2=84):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, l1)
        self.fc2 = nn.Linear(l1, l2)
        self.fc3 = nn.Linear(l2, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = torch.flatten(x, 1)  # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

train 函数

现在它变得有趣了,因为我们对 PyTorch 中的示例进行了一些更改 文档

我们将训练脚本包装在一个函数 中。 该参数将接收我们想要的超参数 训练用。它指定了我们加载和存储数据的目录, ,以便多个运行可以共享同一数据源。 我们还在运行开始时加载模型和优化器状态,如果检查点 。在本教程的后面,您将找到有关如何操作的信息 保存检查点及其用途。train_cifar(config, data_dir=None)configdata_dir

net = Net(config["l1"], config["l2"])

checkpoint = get_checkpoint()
if checkpoint:
    with checkpoint.as_directory() as checkpoint_dir:
        data_path = Path(checkpoint_dir) / "data.pkl"
        with open(data_path, "rb") as fp:
            checkpoint_state = pickle.load(fp)
        start_epoch = checkpoint_state["epoch"]
        net.load_state_dict(checkpoint_state["net_state_dict"])
        optimizer.load_state_dict(checkpoint_state["optimizer_state_dict"])
else:
    start_epoch = 0

优化器的学习率也是可配置的:

optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)

我们还将训练数据拆分为训练和验证子集。因此,我们训练 80% 的数据,并计算剩余 20% 的验证损失。批量大小 使用它,我们遍历训练和测试集也是可配置的。

使用 DataParallel 添加(多)GPU 支持

图像分类在很大程度上受益于 GPU。幸运的是,我们可以继续使用 PyTorch 在 Ray Tune 中的抽象。因此,我们可以将模型包装起来以支持在多个 GPU 上进行数据并行训练:nn.DataParallel

device = "cpu"
if torch.cuda.is_available():
    device = "cuda:0"
    if torch.cuda.device_count() > 1:
        net = nn.DataParallel(net)
net.to(device)

通过使用变量,我们可以确保训练在以下情况下也有效 没有可用的 GPU。PyTorch 要求我们将数据显式发送到 GPU 内存, 喜欢这个:device

for i, data in enumerate(trainloader, 0):
    inputs, labels = data
    inputs, labels = inputs.to(device), labels.to(device)

该代码现在支持在 CPU、单个 GPU 和多个 GPU 上进行训练。值得注意的是,Ray 还支持部分 GPU,因此我们可以在试验之间共享 GPU,只要模型仍然适合 GPU 内存。我们会再来的 以后再说。

与 Ray Tune 通信

最有趣的部分是与 Ray Tune 的通信:

checkpoint_data = {
    "epoch": epoch,
    "net_state_dict": net.state_dict(),
    "optimizer_state_dict": optimizer.state_dict(),
}
with tempfile.TemporaryDirectory() as checkpoint_dir:
    data_path = Path(checkpoint_dir) / "data.pkl"
    with open(data_path, "wb") as fp:
        pickle.dump(checkpoint_data, fp)

    checkpoint = Checkpoint.from_directory(checkpoint_dir)
    train.report(
        {"loss": val_loss / val_steps, "accuracy": correct / total},
        checkpoint=checkpoint,
    )

在这里,我们首先保存一个检查点,然后将一些指标报告回 Ray Tune。具体说来 我们将验证损失和准确性发送回 Ray Tune。然后,Ray Tune 可以使用这些指标 来确定哪种超参数配置可带来最佳结果。这些指标 也可用于及早停止性能不佳的试验,以避免浪费 这些试验的资源。

检查点保存是可选的,但是,如果我们想使用 advanced Population Based Training 等调度程序。 此外,通过保存检查点,我们可以稍后加载经过训练的模型并对其进行验证 在测试集上。最后,保存 checkpoint 对于容错很有用,它允许 我们中断训练并在以后继续训练。

完整的训练功能

完整的代码示例如下所示:

def train_cifar(config, data_dir=None):
    net = Net(config["l1"], config["l2"])

    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda:0"
        if torch.cuda.device_count() > 1:
            net = nn.DataParallel(net)
    net.to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)

    checkpoint = get_checkpoint()
    if checkpoint:
        with checkpoint.as_directory() as checkpoint_dir:
            data_path = Path(checkpoint_dir) / "data.pkl"
            with open(data_path, "rb") as fp:
                checkpoint_state = pickle.load(fp)
            start_epoch = checkpoint_state["epoch"]
            net.load_state_dict(checkpoint_state["net_state_dict"])
            optimizer.load_state_dict(checkpoint_state["optimizer_state_dict"])
    else:
        start_epoch = 0

    trainset, testset = load_data(data_dir)

    test_abs = int(len(trainset) * 0.8)
    train_subset, val_subset = random_split(
        trainset, [test_abs, len(trainset) - test_abs]
    )

    trainloader = torch.utils.data.DataLoader(
        train_subset, batch_size=int(config["batch_size"]), shuffle=True, num_workers=8
    )
    valloader = torch.utils.data.DataLoader(
        val_subset, batch_size=int(config["batch_size"]), shuffle=True, num_workers=8
    )

    for epoch in range(start_epoch, 10):  # loop over the dataset multiple times
        running_loss = 0.0
        epoch_steps = 0
        for i, data in enumerate(trainloader, 0):
            # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()
            epoch_steps += 1
            if i % 2000 == 1999:  # print every 2000 mini-batches
                print(
                    "[%d, %5d] loss: %.3f"
                    % (epoch + 1, i + 1, running_loss / epoch_steps)
                )
                running_loss = 0.0

        # Validation loss
        val_loss = 0.0
        val_steps = 0
        total = 0
        correct = 0
        for i, data in enumerate(valloader, 0):
            with torch.no_grad():
                inputs, labels = data
                inputs, labels = inputs.to(device), labels.to(device)

                outputs = net(inputs)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()

                loss = criterion(outputs, labels)
                val_loss += loss.cpu().numpy()
                val_steps += 1

        checkpoint_data = {
            "epoch": epoch,
            "net_state_dict": net.state_dict(),
            "optimizer_state_dict": optimizer.state_dict(),
        }
        with tempfile.TemporaryDirectory() as checkpoint_dir:
            data_path = Path(checkpoint_dir) / "data.pkl"
            with open(data_path, "wb") as fp:
                pickle.dump(checkpoint_data, fp)

            checkpoint = Checkpoint.from_directory(checkpoint_dir)
            train.report(
                {"loss": val_loss / val_steps, "accuracy": correct / total},
                checkpoint=checkpoint,
            )

    print("Finished Training")

如您所见,大多数代码都是直接从原始示例改编而来的。

测试集精度

通常,机器学习模型的性能是通过保持测试来测试的 set 使用尚未用于训练模型的数据。我们还将其包装在 功能:

def test_accuracy(net, device="cpu"):
    trainset, testset = load_data()

    testloader = torch.utils.data.DataLoader(
        testset, batch_size=4, shuffle=False, num_workers=2
    )

    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    return correct / total

该函数还需要一个参数,因此我们可以执行 测试集验证。device

配置搜索空间

最后,我们需要定义 Ray Tune 的搜索空间。下面是一个示例:

config = {
    "l1": tune.choice([2 ** i for i in range(9)]),
    "l2": tune.choice([2 ** i for i in range(9)]),
    "lr": tune.loguniform(1e-4, 1e-1),
    "batch_size": tune.choice([2, 4, 8, 16])
}

接受从中均匀采样的值列表。 在此示例中,和 参数 应该是 4 到 256 之间的 2 的幂,因此可以是 4、8、16、32、64、128 或 256。 (学习率)应在 0.0001 和 0.1 之间均匀采样。最后 批量大小是 2、4、8 和 16 之间的选项。tune.choice()l1l2lr

现在,在每次试验中,Ray Tune 都会从这些参数中随机采样参数组合 搜索空间。然后,它将并行训练多个模型并找到最佳模型 执行其中的一个。我们还使用 which 将终止 bad 尽早进行试验。ASHAScheduler

我们用 包装函数来设置 constant 参数。我们还可以告诉 Ray Tune 应该是什么资源 适用于每个试用版:train_cifarfunctools.partialdata_dir

gpus_per_trial = 2
# ...
result = tune.run(
    partial(train_cifar, data_dir=data_dir),
    resources_per_trial={"cpu": 8, "gpu": gpus_per_trial},
    config=config,
    num_samples=num_samples,
    scheduler=scheduler,
    checkpoint_at_end=True)

您可以指定 CPU 的数量,然后这些 CPU 可用,例如 以增加 PyTorch 实例的 PyTorch 实例。选中的 在每个试用中,PyTorch 可以看到 GPU 的数量。试用版无权访问 尚未请求的 GPU - 因此您不必关心两次试用 使用同一组资源。num_workersDataLoader

这里我们还可以指定分数 GPU,所以像 完全有效。然后,试用版将相互共享 GPU。 您只需确保模型仍适合 GPU 内存。gpus_per_trial=0.5

训练模型后,我们将找到性能最佳的模型并加载经过训练的模型 network 的 NETWORK 文件。然后我们获得测试集的准确性并报告 一切都通过打印。

完整的 main 函数如下所示:

def main(num_samples=10, max_num_epochs=10, gpus_per_trial=2):
    data_dir = os.path.abspath("./data")
    load_data(data_dir)
    config = {
        "l1": tune.choice([2**i for i in range(9)]),
        "l2": tune.choice([2**i for i in range(9)]),
        "lr": tune.loguniform(1e-4, 1e-1),
        "batch_size": tune.choice([2, 4, 8, 16]),
    }
    scheduler = ASHAScheduler(
        metric="loss",
        mode="min",
        max_t=max_num_epochs,
        grace_period=1,
        reduction_factor=2,
    )
    result = tune.run(
        partial(train_cifar, data_dir=data_dir),
        resources_per_trial={"cpu": 2, "gpu": gpus_per_trial},
        config=config,
        num_samples=num_samples,
        scheduler=scheduler,
    )

    best_trial = result.get_best_trial("loss", "min", "last")
    print(f"Best trial config: {best_trial.config}")
    print(f"Best trial final validation loss: {best_trial.last_result['loss']}")
    print(f"Best trial final validation accuracy: {best_trial.last_result['accuracy']}")

    best_trained_model = Net(best_trial.config["l1"], best_trial.config["l2"])
    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda:0"
        if gpus_per_trial > 1:
            best_trained_model = nn.DataParallel(best_trained_model)
    best_trained_model.to(device)

    best_checkpoint = result.get_best_checkpoint(trial=best_trial, metric="accuracy", mode="max")
    with best_checkpoint.as_directory() as checkpoint_dir:
        data_path = Path(checkpoint_dir) / "data.pkl"
        with open(data_path, "rb") as fp:
            best_checkpoint_data = pickle.load(fp)

        best_trained_model.load_state_dict(best_checkpoint_data["net_state_dict"])
        test_acc = test_accuracy(best_trained_model, device)
        print("Best trial test set accuracy: {}".format(test_acc))


if __name__ == "__main__":
    # You can change the number of GPUs per trial here:
    main(num_samples=10, max_num_epochs=10, gpus_per_trial=0)
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to /var/lib/workspace/beginner_source/data/cifar-10-python.tar.gz

  0% 0.00/170M [00:00<?, ?B/s]
  0% 459k/170M [00:00<00:37, 4.53MB/s]
  5% 7.96M/170M [00:00<00:03, 45.7MB/s]
 11% 18.8M/170M [00:00<00:02, 74.4MB/s]
 17% 29.5M/170M [00:00<00:01, 87.2MB/s]
 24% 40.6M/170M [00:00<00:01, 95.7MB/s]
 30% 51.7M/170M [00:00<00:01, 101MB/s]
 37% 62.8M/170M [00:00<00:01, 104MB/s]
 43% 73.9M/170M [00:00<00:00, 106MB/s]
 50% 84.9M/170M [00:00<00:00, 107MB/s]
 56% 96.0M/170M [00:01<00:00, 108MB/s]
 63% 107M/170M [00:01<00:00, 109MB/s]
 69% 118M/170M [00:01<00:00, 110MB/s]
 76% 130M/170M [00:01<00:00, 111MB/s]
 83% 141M/170M [00:01<00:00, 111MB/s]
 89% 152M/170M [00:01<00:00, 111MB/s]
 96% 163M/170M [00:01<00:00, 110MB/s]
100% 170M/170M [00:01<00:00, 102MB/s]
Extracting /var/lib/workspace/beginner_source/data/cifar-10-python.tar.gz to /var/lib/workspace/beginner_source/data
Files already downloaded and verified
2025-01-02 21:58:16,732 WARNING services.py:1889 -- WARNING: The object store is using /tmp instead of /dev/shm because /dev/shm has only 2147479552 bytes available. This will harm performance! You may be able to free up space by deleting files in /dev/shm. If you are inside a Docker container, you can increase /dev/shm size by passing '--shm-size=10.24gb' to 'docker run' (or add it to the run_options list in a Ray cluster config). Make sure to set this to more than 30% of available RAM.
2025-01-02 21:58:16,992 INFO worker.py:1642 -- Started a local Ray instance.
2025-01-02 21:58:18,354 INFO tune.py:228 -- Initializing Ray automatically. For cluster usage or custom Ray initialization, call `ray.init(...)` before `tune.run(...)`.
2025-01-02 21:58:18,356 INFO tune.py:654 -- [output] This will use the new output engine with verbosity 2. To disable the new output and use the legacy output engine, set the environment variable RAY_AIR_NEW_OUTPUT=0. For more information, please see https://github.com/ray-project/ray/issues/36949
+--------------------------------------------------------------------+
| Configuration for experiment     train_cifar_2025-01-02_21-58-18   |
+--------------------------------------------------------------------+
| Search algorithm                 BasicVariantGenerator             |
| Scheduler                        AsyncHyperBandScheduler           |
| Number of trials                 10                                |
+--------------------------------------------------------------------+

View detailed results here: /var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18
To visualize your results with TensorBoard, run: `tensorboard --logdir /var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18`

Trial status: 10 PENDING
Current time: 2025-01-02 21:58:18. Total running time: 0s
Logical resource usage: 0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+-------------------------------------------------------------------------------+
| Trial name                status       l1     l2            lr     batch_size |
+-------------------------------------------------------------------------------+
| train_cifar_acb57_00000   PENDING      16      1   0.00213327               2 |
| train_cifar_acb57_00001   PENDING       1      2   0.013416                 4 |
| train_cifar_acb57_00002   PENDING     256     64   0.0113784                2 |
| train_cifar_acb57_00003   PENDING      64    256   0.0274071                8 |
| train_cifar_acb57_00004   PENDING      16      2   0.056666                 4 |
| train_cifar_acb57_00005   PENDING       8     64   0.000353097              4 |
| train_cifar_acb57_00006   PENDING      16      4   0.000147684              8 |
| train_cifar_acb57_00007   PENDING     256    256   0.00477469               8 |
| train_cifar_acb57_00008   PENDING     128    256   0.0306227                8 |
| train_cifar_acb57_00009   PENDING       2     16   0.0286986                2 |
+-------------------------------------------------------------------------------+

Trial train_cifar_acb57_00007 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00007 config             |
+--------------------------------------------------+
| batch_size                                     8 |
| l1                                           256 |
| l2                                           256 |
| lr                                       0.00477 |
+--------------------------------------------------+

Trial train_cifar_acb57_00001 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00001 config             |
+--------------------------------------------------+
| batch_size                                     4 |
| l1                                             1 |
| l2                                             2 |
| lr                                       0.01342 |
+--------------------------------------------------+

Trial train_cifar_acb57_00003 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00003 config             |
+--------------------------------------------------+
| batch_size                                     8 |
| l1                                            64 |
| l2                                           256 |
| lr                                       0.02741 |
+--------------------------------------------------+

Trial train_cifar_acb57_00000 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00000 config             |
+--------------------------------------------------+
| batch_size                                     2 |
| l1                                            16 |
| l2                                             1 |
| lr                                       0.00213 |
+--------------------------------------------------+

Trial train_cifar_acb57_00002 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00002 config             |
+--------------------------------------------------+
| batch_size                                     2 |
| l1                                           256 |
| l2                                            64 |
| lr                                       0.01138 |
+--------------------------------------------------+

Trial train_cifar_acb57_00004 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00004 config             |
+--------------------------------------------------+
| batch_size                                     4 |
| l1                                            16 |
| l2                                             2 |
| lr                                       0.05667 |
+--------------------------------------------------+
(func pid=4869) Files already downloaded and verified

Trial train_cifar_acb57_00006 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00006 config             |
+--------------------------------------------------+
| batch_size                                     8 |
| l1                                            16 |
| l2                                             4 |
| lr                                       0.00015 |
+--------------------------------------------------+

Trial train_cifar_acb57_00005 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00005 config             |
+--------------------------------------------------+
| batch_size                                     4 |
| l1                                             8 |
| l2                                            64 |
| lr                                       0.00035 |
+--------------------------------------------------+
(func pid=4868) [1,  2000] loss: 2.321
(func pid=4886) Files already downloaded and verified [repeated 15x across cluster] (Ray deduplicates logs by default. Set RAY_DEDUP_LOGS=0 to disable log deduplication, or see https://docs.ray.io/en/master/ray-observability/ray-logging.html#log-deduplication for more options.)

Trial status: 8 RUNNING | 2 PENDING
Current time: 2025-01-02 21:58:48. Total running time: 30s
Logical resource usage: 16.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+-------------------------------------------------------------------------------+
| Trial name                status       l1     l2            lr     batch_size |
+-------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING      16      1   0.00213327               2 |
| train_cifar_acb57_00001   RUNNING       1      2   0.013416                 4 |
| train_cifar_acb57_00002   RUNNING     256     64   0.0113784                2 |
| train_cifar_acb57_00003   RUNNING      64    256   0.0274071                8 |
| train_cifar_acb57_00004   RUNNING      16      2   0.056666                 4 |
| train_cifar_acb57_00005   RUNNING       8     64   0.000353097              4 |
| train_cifar_acb57_00006   RUNNING      16      4   0.000147684              8 |
| train_cifar_acb57_00007   RUNNING     256    256   0.00477469               8 |
| train_cifar_acb57_00008   PENDING     128    256   0.0306227                8 |
| train_cifar_acb57_00009   PENDING       2     16   0.0286986                2 |
+-------------------------------------------------------------------------------+
(func pid=4868) [1,  4000] loss: 1.153 [repeated 8x across cluster]
(func pid=4871) [1,  4000] loss: 1.047 [repeated 7x across cluster]
(func pid=4868) [1,  6000] loss: 0.768
(func pid=4869) [1,  6000] loss: 0.770

Trial train_cifar_acb57_00007 finished iteration 1 at 2025-01-02 21:59:18. Total running time: 1min 0s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                  54.19759 |
| time_total_s                                      54.19759 |
| training_iteration                                       1 |
| accuracy                                            0.4812 |
| loss                                               1.46991 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000000
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000000)

Trial status: 8 RUNNING | 2 PENDING
Current time: 2025-01-02 21:59:18. Total running time: 1min 0s
Logical resource usage: 16.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+----------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status       l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+----------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING      16      1   0.00213327               2                                                    |
| train_cifar_acb57_00001   RUNNING       1      2   0.013416                 4                                                    |
| train_cifar_acb57_00002   RUNNING     256     64   0.0113784                2                                                    |
| train_cifar_acb57_00003   RUNNING      64    256   0.0274071                8                                                    |
| train_cifar_acb57_00004   RUNNING      16      2   0.056666                 4                                                    |
| train_cifar_acb57_00005   RUNNING       8     64   0.000353097              4                                                    |
| train_cifar_acb57_00006   RUNNING      16      4   0.000147684              8                                                    |
| train_cifar_acb57_00007   RUNNING     256    256   0.00477469               8        1            54.1976   1.46991       0.4812 |
| train_cifar_acb57_00008   PENDING     128    256   0.0306227                8                                                    |
| train_cifar_acb57_00009   PENDING       2     16   0.0286986                2                                                    |
+----------------------------------------------------------------------------------------------------------------------------------+

Trial train_cifar_acb57_00006 finished iteration 1 at 2025-01-02 21:59:18. Total running time: 1min 0s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00006 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                   53.9304 |
| time_total_s                                       53.9304 |
| training_iteration                                       1 |
| accuracy                                            0.1185 |
| loss                                               2.30605 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00006 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00006_6_batch_size=8,l1=16,l2=4,lr=0.0001_2025-01-02_21-58-18/checkpoint_000000

Trial train_cifar_acb57_00006 completed after 1 iterations at 2025-01-02 21:59:18. Total running time: 1min 0s

Trial train_cifar_acb57_00008 started with configuration:
+--------------------------------------------------+
| Trial train_cifar_acb57_00008 config             |
+--------------------------------------------------+
| batch_size                                     8 |
| l1                                           128 |
| l2                                           256 |
| lr                                       0.03062 |
+--------------------------------------------------+
(func pid=4886) Files already downloaded and verified

Trial train_cifar_acb57_00003 finished iteration 1 at 2025-01-02 21:59:20. Total running time: 1min 1s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00003 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                  55.97928 |
| time_total_s                                      55.97928 |
| training_iteration                                       1 |
| accuracy                                            0.2109 |
| loss                                                 2.082 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00003 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00003_3_batch_size=8,l1=64,l2=256,lr=0.0274_2025-01-02_21-58-18/checkpoint_000000

Trial train_cifar_acb57_00003 completed after 1 iterations at 2025-01-02 21:59:20. Total running time: 1min 1s

Trial train_cifar_acb57_00009 started with configuration:
+-------------------------------------------------+
| Trial train_cifar_acb57_00009 config            |
+-------------------------------------------------+
| batch_size                                    2 |
| l1                                            2 |
| l2                                           16 |
| lr                                       0.0287 |
+-------------------------------------------------+
(func pid=4886) Files already downloaded and verified
(func pid=4870) [1,  6000] loss: 0.734 [repeated 3x across cluster]
(func pid=4871) Files already downloaded and verified [repeated 2x across cluster]
(func pid=4868) [1,  8000] loss: 0.576
(func pid=4869) [1,  8000] loss: 0.577
(func pid=4887) [2,  2000] loss: 1.389 [repeated 4x across cluster]
(func pid=4868) [1, 10000] loss: 0.441 [repeated 3x across cluster]
(func pid=4872) [1, 10000] loss: 0.467 [repeated 3x across cluster]

Trial status: 8 RUNNING | 2 TERMINATED
Current time: 2025-01-02 21:59:48. Total running time: 1min 30s
Logical resource usage: 16.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING        16      1   0.00213327               2                                                    |
| train_cifar_acb57_00001   RUNNING         1      2   0.013416                 4                                                    |
| train_cifar_acb57_00002   RUNNING       256     64   0.0113784                2                                                    |
| train_cifar_acb57_00004   RUNNING        16      2   0.056666                 4                                                    |
| train_cifar_acb57_00005   RUNNING         8     64   0.000353097              4                                                    |
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        1            54.1976   1.46991       0.4812 |
| train_cifar_acb57_00008   RUNNING       128    256   0.0306227                8                                                    |
| train_cifar_acb57_00009   RUNNING         2     16   0.0286986                2                                                    |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
+------------------------------------------------------------------------------------------------------------------------------------+
(func pid=4871) [1,  4000] loss: 1.169
(func pid=4870) [1, 10000] loss: 0.463

Trial train_cifar_acb57_00005 finished iteration 1 at 2025-01-02 22:00:00. Total running time: 1min 41s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00005 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                  95.20012 |
| time_total_s                                      95.20012 |
| training_iteration                                       1 |
| accuracy                                            0.3406 |
| loss                                               1.74255 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00005 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000000
(func pid=4885) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000000) [repeated 3x across cluster]

Trial train_cifar_acb57_00001 finished iteration 1 at 2025-01-02 22:00:00. Total running time: 1min 42s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00001 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                  96.32778 |
| time_total_s                                      96.32778 |
| training_iteration                                       1 |
| accuracy                                            0.0989 |
| loss                                               2.30402 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00001 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00001_1_batch_size=4,l1=1,l2=2,lr=0.0134_2025-01-02_21-58-18/checkpoint_000000

Trial train_cifar_acb57_00001 completed after 1 iterations at 2025-01-02 22:00:00. Total running time: 1min 42s

Trial train_cifar_acb57_00004 finished iteration 1 at 2025-01-02 22:00:01. Total running time: 1min 42s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00004 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                  96.47434 |
| time_total_s                                      96.47434 |
| training_iteration                                       1 |
| accuracy                                             0.101 |
| loss                                               2.33135 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00004 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00004_4_batch_size=4,l1=16,l2=2,lr=0.0567_2025-01-02_21-58-18/checkpoint_000000

Trial train_cifar_acb57_00004 completed after 1 iterations at 2025-01-02 22:00:01. Total running time: 1min 42s
(func pid=4871) [1,  6000] loss: 0.777 [repeated 4x across cluster]

Trial train_cifar_acb57_00007 finished iteration 2 at 2025-01-02 22:00:08. Total running time: 1min 50s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000001 |
| time_this_iter_s                                   50.0624 |
| time_total_s                                     104.25999 |
| training_iteration                                       2 |
| accuracy                                            0.5473 |
| loss                                               1.28808 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000001
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000001) [repeated 3x across cluster]

Trial train_cifar_acb57_00008 finished iteration 1 at 2025-01-02 22:00:10. Total running time: 1min 52s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00008 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                   51.9493 |
| time_total_s                                       51.9493 |
| training_iteration                                       1 |
| accuracy                                            0.2172 |
| loss                                               2.05322 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00008 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00008_8_batch_size=8,l1=128,l2=256,lr=0.0306_2025-01-02_21-58-18/checkpoint_000000
(func pid=4885) [2,  2000] loss: 1.727 [repeated 3x across cluster]
(func pid=4871) [1,  8000] loss: 0.584

Trial status: 6 RUNNING | 4 TERMINATED
Current time: 2025-01-02 22:00:18. Total running time: 2min 0s
Logical resource usage: 12.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING        16      1   0.00213327               2                                                    |
| train_cifar_acb57_00002   RUNNING       256     64   0.0113784                2                                                    |
| train_cifar_acb57_00005   RUNNING         8     64   0.000353097              4        1            95.2001   1.74255       0.3406 |
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        2           104.26     1.28808       0.5473 |
| train_cifar_acb57_00008   RUNNING       128    256   0.0306227                8        1            51.9493   2.05322       0.2172 |
| train_cifar_acb57_00009   RUNNING         2     16   0.0286986                2                                                    |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
+------------------------------------------------------------------------------------------------------------------------------------+
(func pid=4868) [1, 16000] loss: 0.247
(func pid=4871) [1, 10000] loss: 0.467 [repeated 5x across cluster]
(func pid=4885) [2,  6000] loss: 0.536 [repeated 2x across cluster]
(func pid=4868) [1, 20000] loss: 0.197 [repeated 5x across cluster]
Trial status: 6 RUNNING | 4 TERMINATED
Current time: 2025-01-02 22:00:48. Total running time: 2min 30s
Logical resource usage: 12.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING        16      1   0.00213327               2                                                    |
| train_cifar_acb57_00002   RUNNING       256     64   0.0113784                2                                                    |
| train_cifar_acb57_00005   RUNNING         8     64   0.000353097              4        1            95.2001   1.74255       0.3406 |
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        2           104.26     1.28808       0.5473 |
| train_cifar_acb57_00008   RUNNING       128    256   0.0306227                8        1            51.9493   2.05322       0.2172 |
| train_cifar_acb57_00009   RUNNING         2     16   0.0286986                2                                                    |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
+------------------------------------------------------------------------------------------------------------------------------------+

Trial train_cifar_acb57_00007 finished iteration 3 at 2025-01-02 22:00:48. Total running time: 2min 30s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000002 |
| time_this_iter_s                                  40.35045 |
| time_total_s                                     144.61044 |
| training_iteration                                       3 |
| accuracy                                            0.5602 |
| loss                                                 1.258 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 3 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000002
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000002) [repeated 2x across cluster]
(func pid=4870) [1, 18000] loss: 0.257 [repeated 2x across cluster]

Trial train_cifar_acb57_00008 finished iteration 2 at 2025-01-02 22:00:53. Total running time: 2min 34s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00008 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000001 |
| time_this_iter_s                                   42.5872 |
| time_total_s                                       94.5365 |
| training_iteration                                       2 |
| accuracy                                            0.2199 |
| loss                                                2.0719 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00008 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00008_8_batch_size=8,l1=128,l2=256,lr=0.0306_2025-01-02_21-58-18/checkpoint_000001

Trial train_cifar_acb57_00008 completed after 2 iterations at 2025-01-02 22:00:53. Total running time: 2min 34s
(func pid=4885) [2, 10000] loss: 0.305 [repeated 2x across cluster]

Trial train_cifar_acb57_00000 finished iteration 1 at 2025-01-02 22:01:01. Total running time: 2min 42s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00000 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                 156.91532 |
| time_total_s                                     156.91532 |
| training_iteration                                       1 |
| accuracy                                            0.2024 |
| loss                                               1.95374 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00000 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00000_0_batch_size=2,l1=16,l2=1,lr=0.0021_2025-01-02_21-58-18/checkpoint_000000
(func pid=4868) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00000_0_batch_size=2,l1=16,l2=1,lr=0.0021_2025-01-02_21-58-18/checkpoint_000000) [repeated 2x across cluster]
(func pid=4870) [1, 20000] loss: 0.232 [repeated 3x across cluster]

Trial train_cifar_acb57_00005 finished iteration 2 at 2025-01-02 22:01:08. Total running time: 2min 49s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00005 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000001 |
| time_this_iter_s                                  68.21913 |
| time_total_s                                     163.41925 |
| training_iteration                                       2 |
| accuracy                                             0.449 |
| loss                                               1.50449 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00005 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000001
(func pid=4885) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000001)
(func pid=4868) [2,  2000] loss: 1.954
(func pid=4871) [1, 18000] loss: 0.260

Trial status: 5 RUNNING | 5 TERMINATED
Current time: 2025-01-02 22:01:18. Total running time: 3min 0s
Logical resource usage: 10.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING        16      1   0.00213327               2        1           156.915    1.95374       0.2024 |
| train_cifar_acb57_00002   RUNNING       256     64   0.0113784                2                                                    |
| train_cifar_acb57_00005   RUNNING         8     64   0.000353097              4        2           163.419    1.50449       0.449  |
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        3           144.61     1.258         0.5602 |
| train_cifar_acb57_00009   RUNNING         2     16   0.0286986                2                                                    |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
+------------------------------------------------------------------------------------------------------------------------------------+
(func pid=4885) [3,  2000] loss: 1.484 [repeated 2x across cluster]

Trial train_cifar_acb57_00002 finished iteration 1 at 2025-01-02 22:01:21. Total running time: 3min 3s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00002 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                 177.56105 |
| time_total_s                                     177.56105 |
| training_iteration                                       1 |
| accuracy                                            0.0985 |
| loss                                                2.3243 |
+------------------------------------------------------------+
(func pid=4870) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00002_2_batch_size=2,l1=256,l2=64,lr=0.0114_2025-01-02_21-58-18/checkpoint_000000)
Trial train_cifar_acb57_00002 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00002_2_batch_size=2,l1=256,l2=64,lr=0.0114_2025-01-02_21-58-18/checkpoint_000000

Trial train_cifar_acb57_00002 completed after 1 iterations at 2025-01-02 22:01:21. Total running time: 3min 3s
(func pid=4871) [1, 20000] loss: 0.233 [repeated 2x across cluster]

Trial train_cifar_acb57_00007 finished iteration 4 at 2025-01-02 22:01:26. Total running time: 3min 8s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000003 |
| time_this_iter_s                                  37.85795 |
| time_total_s                                     182.46839 |
| training_iteration                                       4 |
| accuracy                                            0.5818 |
| loss                                               1.22092 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 4 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000003
(func pid=4885) [3,  4000] loss: 0.735
(func pid=4868) [2,  6000] loss: 0.645
(func pid=4887) [5,  2000] loss: 1.068

Trial train_cifar_acb57_00009 finished iteration 1 at 2025-01-02 22:01:39. Total running time: 3min 21s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00009 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000000 |
| time_this_iter_s                                 139.43723 |
| time_total_s                                     139.43723 |
| training_iteration                                       1 |
| accuracy                                            0.1015 |
| loss                                                2.3257 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00009 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00009_9_batch_size=2,l1=2,l2=16,lr=0.0287_2025-01-02_21-58-18/checkpoint_000000

Trial train_cifar_acb57_00009 completed after 1 iterations at 2025-01-02 22:01:39. Total running time: 3min 21s
(func pid=4871) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00009_9_batch_size=2,l1=2,l2=16,lr=0.0287_2025-01-02_21-58-18/checkpoint_000000) [repeated 2x across cluster]
(func pid=4885) [3,  6000] loss: 0.487

Trial status: 3 RUNNING | 7 TERMINATED
Current time: 2025-01-02 22:01:48. Total running time: 3min 30s
Logical resource usage: 6.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING        16      1   0.00213327               2        1           156.915    1.95374       0.2024 |
| train_cifar_acb57_00005   RUNNING         8     64   0.000353097              4        2           163.419    1.50449       0.449  |
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        4           182.468    1.22092       0.5818 |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00002   TERMINATED    256     64   0.0113784                2        1           177.561    2.3243        0.0985 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
| train_cifar_acb57_00009   TERMINATED      2     16   0.0286986                2        1           139.437    2.3257        0.1015 |
+------------------------------------------------------------------------------------------------------------------------------------+
(func pid=4885) [3,  8000] loss: 0.357 [repeated 2x across cluster]
(func pid=4885) [3, 10000] loss: 0.284 [repeated 3x across cluster]

Trial train_cifar_acb57_00007 finished iteration 5 at 2025-01-02 22:01:59. Total running time: 3min 41s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000004 |
| time_this_iter_s                                  32.97702 |
| time_total_s                                     215.44542 |
| training_iteration                                       5 |
| accuracy                                            0.5554 |
| loss                                               1.30401 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 5 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000004
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000004)

Trial train_cifar_acb57_00005 finished iteration 3 at 2025-01-02 22:02:06. Total running time: 3min 48s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00005 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000002 |
| time_this_iter_s                                   58.1904 |
| time_total_s                                     221.60965 |
| training_iteration                                       3 |
| accuracy                                            0.4754 |
| loss                                               1.45713 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00005 saved a checkpoint for iteration 3 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000002
(func pid=4885) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000002)
(func pid=4868) [2, 14000] loss: 0.276 [repeated 2x across cluster]
(func pid=4885) [4,  2000] loss: 1.381 [repeated 2x across cluster]

Trial status: 3 RUNNING | 7 TERMINATED
Current time: 2025-01-02 22:02:18. Total running time: 4min 0s
Logical resource usage: 6.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING        16      1   0.00213327               2        1           156.915    1.95374       0.2024 |
| train_cifar_acb57_00005   RUNNING         8     64   0.000353097              4        3           221.61     1.45713       0.4754 |
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        5           215.445    1.30401       0.5554 |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00002   TERMINATED    256     64   0.0113784                2        1           177.561    2.3243        0.0985 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
| train_cifar_acb57_00009   TERMINATED      2     16   0.0286986                2        1           139.437    2.3257        0.1015 |
+------------------------------------------------------------------------------------------------------------------------------------+
(func pid=4887) [6,  4000] loss: 0.534 [repeated 2x across cluster]

Trial train_cifar_acb57_00007 finished iteration 6 at 2025-01-02 22:02:32. Total running time: 4min 13s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000005 |
| time_this_iter_s                                  32.56537 |
| time_total_s                                     248.01078 |
| training_iteration                                       6 |
| accuracy                                            0.5841 |
| loss                                               1.24011 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 6 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000005
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000005)
(func pid=4885) [4,  6000] loss: 0.450 [repeated 3x across cluster]
(func pid=4887) [7,  2000] loss: 0.965 [repeated 2x across cluster]

Trial status: 3 RUNNING | 7 TERMINATED
Current time: 2025-01-02 22:02:48. Total running time: 4min 30s
Logical resource usage: 6.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   RUNNING        16      1   0.00213327               2        1           156.915    1.95374       0.2024 |
| train_cifar_acb57_00005   RUNNING         8     64   0.000353097              4        3           221.61     1.45713       0.4754 |
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        6           248.011    1.24011       0.5841 |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00002   TERMINATED    256     64   0.0113784                2        1           177.561    2.3243        0.0985 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
| train_cifar_acb57_00009   TERMINATED      2     16   0.0286986                2        1           139.437    2.3257        0.1015 |
+------------------------------------------------------------------------------------------------------------------------------------+

Trial train_cifar_acb57_00000 finished iteration 2 at 2025-01-02 22:02:49. Total running time: 4min 30s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00000 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000001 |
| time_this_iter_s                                 107.74446 |
| time_total_s                                     264.65979 |
| training_iteration                                       2 |
| accuracy                                            0.2192 |
| loss                                               1.91832 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00000 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00000_0_batch_size=2,l1=16,l2=1,lr=0.0021_2025-01-02_21-58-18/checkpoint_000001

Trial train_cifar_acb57_00000 completed after 2 iterations at 2025-01-02 22:02:49. Total running time: 4min 30s
(func pid=4868) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00000_0_batch_size=2,l1=16,l2=1,lr=0.0021_2025-01-02_21-58-18/checkpoint_000001)
(func pid=4885) [4, 10000] loss: 0.266 [repeated 2x across cluster]

Trial train_cifar_acb57_00005 finished iteration 4 at 2025-01-02 22:02:59. Total running time: 4min 41s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00005 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000003 |
| time_this_iter_s                                  53.03366 |
| time_total_s                                     274.64331 |
| training_iteration                                       4 |
| accuracy                                            0.5127 |
| loss                                               1.37224 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00005 saved a checkpoint for iteration 4 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000003

Trial train_cifar_acb57_00005 completed after 4 iterations at 2025-01-02 22:02:59. Total running time: 4min 41s
(func pid=4885) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00005_5_batch_size=4,l1=8,l2=64,lr=0.0004_2025-01-02_21-58-18/checkpoint_000003)

Trial train_cifar_acb57_00007 finished iteration 7 at 2025-01-02 22:03:02. Total running time: 4min 44s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000006 |
| time_this_iter_s                                   30.3697 |
| time_total_s                                     278.38048 |
| training_iteration                                       7 |
| accuracy                                            0.5745 |
| loss                                               1.33752 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 7 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000006
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000006)
(func pid=4887) [8,  2000] loss: 0.951 [repeated 2x across cluster]

Trial status: 9 TERMINATED | 1 RUNNING
Current time: 2025-01-02 22:03:18. Total running time: 5min 0s
Logical resource usage: 2.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        7           278.38     1.33752       0.5745 |
| train_cifar_acb57_00000   TERMINATED     16      1   0.00213327               2        2           264.66     1.91832       0.2192 |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00002   TERMINATED    256     64   0.0113784                2        1           177.561    2.3243        0.0985 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00005   TERMINATED      8     64   0.000353097              4        4           274.643    1.37224       0.5127 |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
| train_cifar_acb57_00009   TERMINATED      2     16   0.0286986                2        1           139.437    2.3257        0.1015 |
+------------------------------------------------------------------------------------------------------------------------------------+
(func pid=4887) [8,  4000] loss: 0.502

Trial train_cifar_acb57_00007 finished iteration 8 at 2025-01-02 22:03:29. Total running time: 5min 10s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000007 |
| time_this_iter_s                                  26.38767 |
| time_total_s                                     304.76815 |
| training_iteration                                       8 |
| accuracy                                            0.5755 |
| loss                                               1.28171 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 8 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000007
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000007)
(func pid=4887) [9,  2000] loss: 0.934
(func pid=4887) [9,  4000] loss: 0.492

Trial status: 9 TERMINATED | 1 RUNNING
Current time: 2025-01-02 22:03:49. Total running time: 5min 30s
Logical resource usage: 2.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        8           304.768    1.28171       0.5755 |
| train_cifar_acb57_00000   TERMINATED     16      1   0.00213327               2        2           264.66     1.91832       0.2192 |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00002   TERMINATED    256     64   0.0113784                2        1           177.561    2.3243        0.0985 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00005   TERMINATED      8     64   0.000353097              4        4           274.643    1.37224       0.5127 |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
| train_cifar_acb57_00009   TERMINATED      2     16   0.0286986                2        1           139.437    2.3257        0.1015 |
+------------------------------------------------------------------------------------------------------------------------------------+

Trial train_cifar_acb57_00007 finished iteration 9 at 2025-01-02 22:03:55. Total running time: 5min 37s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000008 |
| time_this_iter_s                                  26.51591 |
| time_total_s                                     331.28406 |
| training_iteration                                       9 |
| accuracy                                            0.5687 |
| loss                                               1.35061 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 9 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000008
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000008)
(func pid=4887) [10,  2000] loss: 0.893
(func pid=4887) [10,  4000] loss: 0.492

Trial status: 9 TERMINATED | 1 RUNNING
Current time: 2025-01-02 22:04:19. Total running time: 6min 0s
Logical resource usage: 2.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00007   RUNNING       256    256   0.00477469               8        9           331.284    1.35061       0.5687 |
| train_cifar_acb57_00000   TERMINATED     16      1   0.00213327               2        2           264.66     1.91832       0.2192 |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00002   TERMINATED    256     64   0.0113784                2        1           177.561    2.3243        0.0985 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00005   TERMINATED      8     64   0.000353097              4        4           274.643    1.37224       0.5127 |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
| train_cifar_acb57_00009   TERMINATED      2     16   0.0286986                2        1           139.437    2.3257        0.1015 |
+------------------------------------------------------------------------------------------------------------------------------------+

Trial train_cifar_acb57_00007 finished iteration 10 at 2025-01-02 22:04:21. Total running time: 6min 3s
+------------------------------------------------------------+
| Trial train_cifar_acb57_00007 result                       |
+------------------------------------------------------------+
| checkpoint_dir_name                      checkpoint_000009 |
| time_this_iter_s                                  26.11893 |
| time_total_s                                     357.40299 |
| training_iteration                                      10 |
| accuracy                                            0.5642 |
| loss                                                1.3626 |
+------------------------------------------------------------+
Trial train_cifar_acb57_00007 saved a checkpoint for iteration 10 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000009

Trial train_cifar_acb57_00007 completed after 10 iterations at 2025-01-02 22:04:21. Total running time: 6min 3s

Trial status: 10 TERMINATED
Current time: 2025-01-02 22:04:21. Total running time: 6min 3s
Logical resource usage: 2.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:M60)
+------------------------------------------------------------------------------------------------------------------------------------+
| Trial name                status         l1     l2            lr     batch_size     iter     total time (s)      loss     accuracy |
+------------------------------------------------------------------------------------------------------------------------------------+
| train_cifar_acb57_00000   TERMINATED     16      1   0.00213327               2        2           264.66     1.91832       0.2192 |
| train_cifar_acb57_00001   TERMINATED      1      2   0.013416                 4        1            96.3278   2.30402       0.0989 |
| train_cifar_acb57_00002   TERMINATED    256     64   0.0113784                2        1           177.561    2.3243        0.0985 |
| train_cifar_acb57_00003   TERMINATED     64    256   0.0274071                8        1            55.9793   2.082         0.2109 |
| train_cifar_acb57_00004   TERMINATED     16      2   0.056666                 4        1            96.4743   2.33135       0.101  |
| train_cifar_acb57_00005   TERMINATED      8     64   0.000353097              4        4           274.643    1.37224       0.5127 |
| train_cifar_acb57_00006   TERMINATED     16      4   0.000147684              8        1            53.9304   2.30605       0.1185 |
| train_cifar_acb57_00007   TERMINATED    256    256   0.00477469               8       10           357.403    1.3626        0.5642 |
| train_cifar_acb57_00008   TERMINATED    128    256   0.0306227                8        2            94.5365   2.0719        0.2199 |
| train_cifar_acb57_00009   TERMINATED      2     16   0.0286986                2        1           139.437    2.3257        0.1015 |
+------------------------------------------------------------------------------------------------------------------------------------+

Best trial config: {'l1': 256, 'l2': 256, 'lr': 0.00477468908087826, 'batch_size': 8}
Best trial final validation loss: 1.362598385155201
Best trial final validation accuracy: 0.5642
(func pid=4887) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-01-02_21-58-18/train_cifar_acb57_00007_7_batch_size=8,l1=256,l2=256,lr=0.0048_2025-01-02_21-58-18/checkpoint_000009)
Files already downloaded and verified
Files already downloaded and verified
Best trial test set accuracy: 0.5794

如果运行代码,示例输出可能如下所示:

Number of trials: 10/10 (10 TERMINATED)
+-----+--------------+------+------+-------------+--------+---------+------------+
| ... |   batch_size |   l1 |   l2 |          lr |   iter |    loss |   accuracy |
|-----+--------------+------+------+-------------+--------+---------+------------|
| ... |            2 |    1 |  256 | 0.000668163 |      1 | 2.31479 |     0.0977 |
| ... |            4 |   64 |    8 | 0.0331514   |      1 | 2.31605 |     0.0983 |
| ... |            4 |    2 |    1 | 0.000150295 |      1 | 2.30755 |     0.1023 |
| ... |           16 |   32 |   32 | 0.0128248   |     10 | 1.66912 |     0.4391 |
| ... |            4 |    8 |  128 | 0.00464561  |      2 | 1.7316  |     0.3463 |
| ... |            8 |  256 |    8 | 0.00031556  |      1 | 2.19409 |     0.1736 |
| ... |            4 |   16 |  256 | 0.00574329  |      2 | 1.85679 |     0.3368 |
| ... |            8 |    2 |    2 | 0.00325652  |      1 | 2.30272 |     0.0984 |
| ... |            2 |    2 |    2 | 0.000342987 |      2 | 1.76044 |     0.292  |
| ... |            4 |   64 |   32 | 0.003734    |      8 | 1.53101 |     0.4761 |
+-----+--------------+------+------+-------------+--------+---------+------------+

Best trial config: {'l1': 64, 'l2': 32, 'lr': 0.0037339984519545164, 'batch_size': 4}
Best trial final validation loss: 1.5310075663924216
Best trial final validation accuracy: 0.4761
Best trial test set accuracy: 0.4737

为避免浪费资源,大多数试验已提前停止。 表现最好的试验实现了约 47% 的验证准确率,这可以 在测试集上确认。

就是这样!您现在可以调整 PyTorch 模型的参数。

脚本总运行时间:(6 分 20.572 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源