使用自定义 C++ 类扩展 TorchScript¶
创建时间: 2020年1月23日 |上次更新时间:2024 年 12 月 2 日 |上次验证: Nov 05, 2024
警告
TorchScript 不再处于积极开发阶段。
本教程是自定义运算符教程的后续教程,并介绍了我们构建的用于将 C++ 类绑定到 TorchScript 的 API 和 Python 同时进行。该 API 与 pybind11 非常相似,大部分概念都会转移 如果您熟悉该系统,请结束。
在 C++ 中实现和绑定类¶
在本教程中,我们将定义一个简单的 C++ 类,该类维护持久性 state 的值。
// This header is all you need to do the C++ portions of this
// tutorial
#include <torch/script.h>
// This header is what defines the custom class registration
// behavior specifically. script.h already includes this, but
// we include it here so you know it exists in case you want
// to look at the API or implementation.
#include <torch/custom_class.h>
#include <string>
#include <vector>
template <class T>
struct MyStackClass : torch::CustomClassHolder {
std::vector<T> stack_;
MyStackClass(std::vector<T> init) : stack_(init.begin(), init.end()) {}
void push(T x) {
stack_.push_back(x);
}
T pop() {
auto val = stack_.back();
stack_.pop_back();
return val;
}
c10::intrusive_ptr<MyStackClass> clone() const {
return c10::make_intrusive<MyStackClass>(stack_);
}
void merge(const c10::intrusive_ptr<MyStackClass>& c) {
for (auto& elem : c->stack_) {
push(elem);
}
}
};
有几点需要注意:
torch/custom_class.h
是扩展 TorchScript 时需要包含的标头 替换为您的自定义类。请注意,每当我们使用自定义 类,我们通过 的实例来实现。可以看作一个智能指针,但存储了引用计数 直接存储在对象中,而不是单独的元数据块(如 . 内部使用相同的指针类型; 自定义类也必须使用这个指针类型,以便我们可以 一致地管理不同的对象类型。
c10::intrusive_ptr<>
intrusive_ptr
std::shared_ptr
std::shared_ptr
torch::Tensor
要注意的第二件事是用户定义的类必须继承自 。这可确保自定义类具有 存储引用计数。
torch::CustomClassHolder
现在让我们看看如何使这个类对 TorchScript 可见,这个过程称为 绑定类:
// Notice a few things:
// - We pass the class to be registered as a template parameter to
// `torch::class_`. In this instance, we've passed the
// specialization of the MyStackClass class ``MyStackClass<std::string>``.
// In general, you cannot register a non-specialized template
// class. For non-templated classes, you can just pass the
// class name directly as the template parameter.
// - The arguments passed to the constructor make up the "qualified name"
// of the class. In this case, the registered class will appear in
// Python and C++ as `torch.classes.my_classes.MyStackClass`. We call
// the first argument the "namespace" and the second argument the
// actual class name.
TORCH_LIBRARY(my_classes, m) {
m.class_<MyStackClass<std::string>>("MyStackClass")
// The following line registers the contructor of our MyStackClass
// class that takes a single `std::vector<std::string>` argument,
// i.e. it exposes the C++ method `MyStackClass(std::vector<T> init)`.
// Currently, we do not support registering overloaded
// constructors, so for now you can only `def()` one instance of
// `torch::init`.
.def(torch::init<std::vector<std::string>>())
// The next line registers a stateless (i.e. no captures) C++ lambda
// function as a method. Note that a lambda function must take a
// `c10::intrusive_ptr<YourClass>` (or some const/ref version of that)
// as the first argument. Other arguments can be whatever you want.
.def("top", [](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
return self->stack_.back();
})
// The following four lines expose methods of the MyStackClass<std::string>
// class as-is. `torch::class_` will automatically examine the
// argument and return types of the passed-in method pointers and
// expose these to Python and TorchScript accordingly. Finally, notice
// that we must take the *address* of the fully-qualified method name,
// i.e. use the unary `&` operator, due to C++ typing rules.
.def("push", &MyStackClass<std::string>::push)
.def("pop", &MyStackClass<std::string>::pop)
.def("clone", &MyStackClass<std::string>::clone)
.def("merge", &MyStackClass<std::string>::merge)
;
}
使用 CMake 将示例构建为 C++ 项目¶
现在,我们将使用 CMake 构建系统构建上述 C++ 代码。首先,获取所有 C++ 代码
到目前为止,我们已经介绍了它并将其放在一个名为 .
然后,编写一个简单的文件并将其放在
同一目录。这应该看起来像这样:class.cpp
CMakeLists.txt
CMakeLists.txt
cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
project(custom_class)
find_package(Torch REQUIRED)
# Define our library target
add_library(custom_class SHARED class.cpp)
set(CMAKE_CXX_STANDARD 14)
# Link against LibTorch
target_link_libraries(custom_class "${TORCH_LIBRARIES}")
此外,创建一个目录。您的文件树应如下所示:build
custom_class_project/
class.cpp
CMakeLists.txt
build/
我们假设您已按照 中所述的相同方式设置环境 上一个教程。 继续调用 cmake,然后调用 make 来构建项目:
$ cd build
$ cmake -DCMAKE_PREFIX_PATH="$(python -c 'import torch.utils; print(torch.utils.cmake_prefix_path)')" ..
-- The C compiler identification is GNU 7.3.1
-- The CXX compiler identification is GNU 7.3.1
-- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc
-- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++
-- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found torch: /torchbind_tutorial/libtorch/lib/libtorch.so
-- Configuring done
-- Generating done
-- Build files have been written to: /torchbind_tutorial/build
$ make -j
Scanning dependencies of target custom_class
[ 50%] Building CXX object CMakeFiles/custom_class.dir/class.cpp.o
[100%] Linking CXX shared library libcustom_class.so
[100%] Built target custom_class
您会发现现在 (除其他外) 有一个动态库
文件。在 Linux 上,这可能被命名为 。所以文件树应该看起来像这样:libcustom_class.so
custom_class_project/
class.cpp
CMakeLists.txt
build/
libcustom_class.so
从 Python 和 TorchScript 使用 C++ 类¶
现在我们已经将类及其注册编译成了一个文件,
我们可以将该 .so 加载到 Python 中并尝试一下。下面是一个脚本
证明:.so
import torch
# `torch.classes.load_library()` allows you to pass the path to your .so file
# to load it in and make the custom C++ classes available to both Python and
# TorchScript
torch.classes.load_library("build/libcustom_class.so")
# You can query the loaded libraries like this:
print(torch.classes.loaded_libraries)
# prints {'/custom_class_project/build/libcustom_class.so'}
# We can find and instantiate our custom C++ class in python by using the
# `torch.classes` namespace:
#
# This instantiation will invoke the MyStackClass(std::vector<T> init)
# constructor we registered earlier
s = torch.classes.my_classes.MyStackClass(["foo", "bar"])
# We can call methods in Python
s.push("pushed")
assert s.pop() == "pushed"
# Test custom operator
s.push("pushed")
torch.ops.my_classes.manipulate_instance(s) # acting as s.pop()
assert s.top() == "bar"
# Returning and passing instances of custom classes works as you'd expect
s2 = s.clone()
s.merge(s2)
for expected in ["bar", "foo", "bar", "foo"]:
assert s.pop() == expected
# We can also use the class in TorchScript
# For now, we need to assign the class's type to a local in order to
# annotate the type on the TorchScript function. This may change
# in the future.
MyStackClass = torch.classes.my_classes.MyStackClass
@torch.jit.script
def do_stacks(s: MyStackClass): # We can pass a custom class instance
# We can instantiate the class
s2 = torch.classes.my_classes.MyStackClass(["hi", "mom"])
s2.merge(s) # We can call a method on the class
# We can also return instances of the class
# from TorchScript function/methods
return s2.clone(), s2.top()
stack, top = do_stacks(torch.classes.my_classes.MyStackClass(["wow"]))
assert top == "wow"
for expected in ["wow", "mom", "hi"]:
assert stack.pop() == expected
使用自定义类保存、加载和运行 TorchScript 代码¶
我们还可以在 C++ 进程中使用自定义注册的 C++ 类,使用
libtorch 中。例如,让我们定义一个简单的
实例化并调用 MyStackClass 类上的方法:nn.Module
import torch
torch.classes.load_library('build/libcustom_class.so')
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, s: str) -> str:
stack = torch.classes.my_classes.MyStackClass(["hi", "mom"])
return stack.pop() + s
scripted_foo = torch.jit.script(Foo())
print(scripted_foo.graph)
scripted_foo.save('foo.pt')
foo.pt
现在包含序列化的 TorchScript
程序。
现在,我们将定义一个新的 CMake 项目来展示如何加载 此模型及其所需的 .so 文件。有关如何执行此操作的完整处理, 请查看 在 C++ 中加载 TorchScript 模型教程 。
与之前类似,让我们创建一个包含以下内容的文件结构:
cpp_inference_example/
infer.cpp
CMakeLists.txt
foo.pt
build/
custom_class_project/
class.cpp
CMakeLists.txt
build/
请注意,我们已经复制了序列化文件以及源文件
树。我们将 作为依赖项添加到此 C++ 项目中,以便我们可以
将自定义类构建到二进制文件中。foo.pt
custom_class_project
custom_class_project
让我们填充以下内容:infer.cpp
#include <torch/script.h>
#include <iostream>
#include <memory>
int main(int argc, const char* argv[]) {
torch::jit::Module module;
try {
// Deserialize the ScriptModule from a file using torch::jit::load().
module = torch::jit::load("foo.pt");
}
catch (const c10::Error& e) {
std::cerr << "error loading the model\n";
return -1;
}
std::vector<c10::IValue> inputs = {"foobarbaz"};
auto output = module.forward(inputs).toString();
std::cout << output->string() << std::endl;
}
同样,让我们定义我们的 CMakeLists.txt 文件:
cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
project(infer)
find_package(Torch REQUIRED)
add_subdirectory(custom_class_project)
# Define our library target
add_executable(infer infer.cpp)
set(CMAKE_CXX_STANDARD 14)
# Link against LibTorch
target_link_libraries(infer "${TORCH_LIBRARIES}")
# This is where we link in our libcustom_class code, making our
# custom class available in our binary.
target_link_libraries(infer -Wl,--no-as-needed custom_class)
您知道练习: , , 和 :cd build
cmake
make
$ cd build
$ cmake -DCMAKE_PREFIX_PATH="$(python -c 'import torch.utils; print(torch.utils.cmake_prefix_path)')" ..
-- The C compiler identification is GNU 7.3.1
-- The CXX compiler identification is GNU 7.3.1
-- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc
-- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++
-- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found torch: /local/miniconda3/lib/python3.7/site-packages/torch/lib/libtorch.so
-- Configuring done
-- Generating done
-- Build files have been written to: /cpp_inference_example/build
$ make -j
Scanning dependencies of target custom_class
[ 25%] Building CXX object custom_class_project/CMakeFiles/custom_class.dir/class.cpp.o
[ 50%] Linking CXX shared library libcustom_class.so
[ 50%] Built target custom_class
Scanning dependencies of target infer
[ 75%] Building CXX object CMakeFiles/infer.dir/infer.cpp.o
[100%] Linking CXX executable infer
[100%] Built target infer
现在我们可以运行我们令人兴奋的 C++ 二进制文件了:
$ ./infer
momfoobarbaz
不可思议!
将自定义类移入/移出 IValues¶
您也可能需要将自定义类移入或移出自定义 C++ 类实例:IValue``s, such as when you take or return ``IValue``s from TorchScript methods
or you want to instantiate a custom class attribute in C++. For creating an
``IValue
torch::make_custom_class<T>()
提供类似于 c10::intrusive_ptr<T 的 API> 因为它将接受你提供给它的任何参数集,请调用构造函数 of T 匹配该参数集,并将该实例包装起来并返回它。 但是,它不是仅返回指向自定义类对象的指针,而是返回 包装对象。然后,您可以直接将其传递给 TorchScript 的 TorchScript 中。IValue
IValue
如果您已经指向您的类,则 可以使用构造函数 .
intrusive_ptr
IValue(intrusive_ptr<T>)
要转换回自定义类:IValue
IValue::toCustomClass<T>()
将返回指向 自定义类。在内部,这个函数正在检查 它注册为自定义类,并且 does 实际上包含 自定义类。您可以通过以下方式手动检查 是否包含自定义类 叫。intrusive_ptr<T>
IValue
T
IValue
IValue
isCustomClass()
为自定义 C++ 类定义序列化/反序列化方法¶
如果您尝试将具有自定义绑定 C++ 类的 另存为
属性,则会收到以下错误:ScriptModule
# export_attr.py
import torch
torch.classes.load_library('build/libcustom_class.so')
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.stack = torch.classes.my_classes.MyStackClass(["just", "testing"])
def forward(self, s: str) -> str:
return self.stack.pop() + s
scripted_foo = torch.jit.script(Foo())
scripted_foo.save('foo.pt')
loaded = torch.jit.load('foo.pt')
print(loaded.stack.pop())
$ python export_attr.py
RuntimeError: Cannot serialize custom bound C++ class __torch__.torch.classes.my_classes.MyStackClass. Please define serialization methods via def_pickle for this class. (pushIValueImpl at ../torch/csrc/jit/pickler.cpp:128)
这是因为 TorchScript 无法自动找出哪些信息
save 从 C++ 类中保存。您必须手动指定。实现目标的方法
是定义 和 类的方法
上的特殊方法 。__getstate__
__setstate__
def_pickle
class_
注意
和 在 TorchScript 中的语义是
相当于 Python pickle 模块的 API。您可以详细了解我们如何使用这些方法。__getstate__
__setstate__
下面是一个调用示例,我们可以添加到 的注册中以包含序列化方法:def_pickle
MyStackClass
// class_<>::def_pickle allows you to define the serialization
// and deserialization methods for your C++ class.
// Currently, we only support passing stateless lambda functions
// as arguments to def_pickle
.def_pickle(
// __getstate__
// This function defines what data structure should be produced
// when we serialize an instance of this class. The function
// must take a single `self` argument, which is an intrusive_ptr
// to the instance of the object. The function can return
// any type that is supported as a return value of the TorchScript
// custom operator API. In this instance, we've chosen to return
// a std::vector<std::string> as the salient data to preserve
// from the class.
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self)
-> std::vector<std::string> {
return self->stack_;
},
// __setstate__
// This function defines how to create a new instance of the C++
// class when we are deserializing. The function must take a
// single argument of the same type as the return value of
// `__getstate__`. The function must return an intrusive_ptr
// to a new instance of the C++ class, initialized however
// you would like given the serialized state.
[](std::vector<std::string> state)
-> c10::intrusive_ptr<MyStackClass<std::string>> {
// A convenient way to instantiate an object and get an
// intrusive_ptr to it is via `make_intrusive`. We use
// that here to allocate an instance of MyStackClass<std::string>
// and call the single-argument std::vector<std::string>
// constructor with the serialized state.
return c10::make_intrusive<MyStackClass<std::string>>(std::move(state));
});
注意
我们在 pickle API 中采用了与 pybind11 不同的方法。而 pybind11
作为特殊函数传递给 ,
为此,我们有一个单独的方法。这是因为
name 已被占用,我们不想造成混淆。pybind11::pickle()
class_::def()
def_pickle
torch::jit::pickle
一旦我们以这种方式定义了(反)序列化行为,我们的脚本就可以 现在运行成功:
$ python ../export_attr.py
testing
定义采用或返回绑定 C++ 类的自定义运算符¶
定义自定义 C++ 类后,还可以使用该类 作为参数或从自定义运算符(即自由函数)返回。假设 您有以下 free 函数:
c10::intrusive_ptr<MyStackClass<std::string>> manipulate_instance(const c10::intrusive_ptr<MyStackClass<std::string>>& instance) {
instance->pop();
return instance;
}
您可以在块中运行以下代码注册它:TORCH_LIBRARY
m.def(
"manipulate_instance(__torch__.torch.classes.my_classes.MyStackClass x) -> __torch__.torch.classes.my_classes.MyStackClass Y",
manipulate_instance
);
有关注册 API 的更多详细信息,请参阅自定义操作教程。
完成此操作后,您可以使用如下示例所示的运算:
class TryCustomOp(torch.nn.Module):
def __init__(self):
super(TryCustomOp, self).__init__()
self.f = torch.classes.my_classes.MyStackClass(["foo", "bar"])
def forward(self):
return torch.ops.my_classes.manipulate_instance(self.f)
注意
注册将 C++ 类作为参数的运算符需要
自定义类已注册。您可以通过以下方式强制执行此操作
确保自定义类注册和免费函数定义
位于同一个块中,并且自定义类
首先注册。将来,我们可能会放宽此要求,
以便可以按任何顺序注册这些内容。TORCH_LIBRARY
结论¶
本教程向您介绍了如何向 TorchScript 公开 C++ 类 (以及扩展的 Python),如何注册它的方法,如何使用它 类,以及如何使用 类并在独立的 C++ 进程中运行该代码。您现在已经准备好了 C++使用与 第三方 C++ 库或实现任何其他需要 在 Python、TorchScript 和 C++ 之间平滑混合。
与往常一样,如果您遇到任何问题或有疑问,可以使用我们的论坛或 GitHub 问题与我们联系。此外,我们的常见问题 (FAQ) 页面可能包含有用的信息。