目录

(测试版)PyTorch 中 Eager 模式的静态量化

创建时间: 2021 年 3 月 24 日 |上次更新时间:2024 年 8 月 27 日 |上次验证: Nov 05, 2024

作者Raghuraman Krishnamoorthi 编辑:Seth WeidmanJerry Zhang

本教程介绍如何进行训练后静态量化,并说明 两种更高级的技术 - 每通道量化和量化感知训练 - 以进一步提高模型的准确性。请注意,目前仅支持量化 对于 CPU,因此我们不会在本教程中使用 GPU/CUDA。 在本教程结束时,您将看到 PyTorch 中的量化如何导致 在提高速度的同时显著减小模型大小。此外,您还将了解如何操作 轻松应用此处显示的一些高级量化技术,以便您的量化模型花费更少的时间 的准确性命中率。 警告:我们使用了大量来自其他 PyTorch 存储库的样板代码,例如, 定义模型架构、定义数据加载器等。我们当然 鼓励你阅读它;但是,如果您想使用量化功能,请随意 跳至“4.后训练静态量化“部分。 我们将从执行必要的导入开始:MobileNetV2

import os
import sys
import time
import numpy as np

import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import datasets
import torchvision.transforms as transforms

# Set up warnings
import warnings
warnings.filterwarnings(
    action='ignore',
    category=DeprecationWarning,
    module=r'.*'
)
warnings.filterwarnings(
    action='default',
    module=r'torch.ao.quantization'
)

# Specify random seed for repeatable results
torch.manual_seed(191009)

1. 模型架构

我们首先定义了 MobileNetV2 模型架构,并进行了几项值得注意的修改 要启用量化:

  • 将 add 替换为nn.quantized.FloatFunctional

  • 在网络的开头和结尾插入 and。QuantStubDeQuantStub

  • 将 ReLU6 替换为 ReLU

注意:此代码取自此处

from torch.ao.quantization import QuantStub, DeQuantStub

def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNReLU(nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super(ConvBNReLU, self).__init__(
            nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes, momentum=0.1),
            # Replace with ReLU
            nn.ReLU(inplace=False)
        )


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            # pw
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([
            # dw
            ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
            # pw-linear
            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
            nn.BatchNorm2d(oup, momentum=0.1),
        ])
        self.conv = nn.Sequential(*layers)
        # Replace torch.add with floatfunctional
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        if self.use_res_connect:
            return self.skip_add.add(x, self.conv(x))
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8):
        """
        MobileNet V2 main class
        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number
            Set to 1 to turn off rounding
        """
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
            raise ValueError("inverted_residual_setting should be non-empty "
                             "or a 4-element list, got {}".format(inverted_residual_setting))

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
        features = [ConvBNReLU(3, input_channel, stride=2)]
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
        # building last several layers
        features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
        # make it nn.Sequential
        self.features = nn.Sequential(*features)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()
        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(self.last_channel, num_classes),
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def forward(self, x):
        x = self.quant(x)
        x = self.features(x)
        x = x.mean([2, 3])
        x = self.classifier(x)
        x = self.dequant(x)
        return x

    # Fuse Conv+BN and Conv+BN+Relu modules prior to quantization
    # This operation does not change the numerics
    def fuse_model(self, is_qat=False):
        fuse_modules = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules
        for m in self.modules():
            if type(m) == ConvBNReLU:
                fuse_modules(m, ['0', '1', '2'], inplace=True)
            if type(m) == InvertedResidual:
                for idx in range(len(m.conv)):
                    if type(m.conv[idx]) == nn.Conv2d:
                        fuse_modules(m.conv, [str(idx), str(idx + 1)], inplace=True)

2. 辅助函数

接下来,我们定义几个辅助函数来帮助进行模型评估。这些大部分来自这里

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=':f'):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


def evaluate(model, criterion, data_loader, neval_batches):
    model.eval()
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    cnt = 0
    with torch.no_grad():
        for image, target in data_loader:
            output = model(image)
            loss = criterion(output, target)
            cnt += 1
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            print('.', end = '')
            top1.update(acc1[0], image.size(0))
            top5.update(acc5[0], image.size(0))
            if cnt >= neval_batches:
                 return top1, top5

    return top1, top5

def load_model(model_file):
    model = MobileNetV2()
    state_dict = torch.load(model_file, weights_only=True)
    model.load_state_dict(state_dict)
    model.to('cpu')
    return model

def print_size_of_model(model):
    torch.save(model.state_dict(), "temp.p")
    print('Size (MB):', os.path.getsize("temp.p")/1e6)
    os.remove('temp.p')

3. 定义数据集和数据加载器

作为我们最后一个主要的设置步骤,我们为训练和测试集定义了数据加载器。

ImageNet 数据

要使用整个 ImageNet 数据集运行本教程中的代码,请首先按照此处 ImageNet Data 中的说明下载 imagenet。将下载的文件解压缩到“data_path”文件夹中。

下载数据后,我们在下面显示定义我们将用于读取的数据加载器的函数 在这个数据中。这些功能大多来自这里

def prepare_data_loaders(data_path):
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    dataset = torchvision.datasets.ImageNet(
        data_path, split="train", transform=transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))
    dataset_test = torchvision.datasets.ImageNet(
        data_path, split="val", transform=transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ]))

    train_sampler = torch.utils.data.RandomSampler(dataset)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=train_batch_size,
        sampler=train_sampler)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=eval_batch_size,
        sampler=test_sampler)

    return data_loader, data_loader_test

接下来,我们将加载预先训练的 MobileNetV2 模型。我们在此处提供了下载模型的 URL。

data_path = '~/.data/imagenet'
saved_model_dir = 'data/'
float_model_file = 'mobilenet_pretrained_float.pth'
scripted_float_model_file = 'mobilenet_quantization_scripted.pth'
scripted_quantized_model_file = 'mobilenet_quantization_scripted_quantized.pth'

train_batch_size = 30
eval_batch_size = 50

data_loader, data_loader_test = prepare_data_loaders(data_path)
criterion = nn.CrossEntropyLoss()
float_model = load_model(saved_model_dir + float_model_file).to('cpu')

# Next, we'll "fuse modules"; this can both make the model faster by saving on memory access
# while also improving numerical accuracy. While this can be used with any model, this is
# especially common with quantized models.

print('\n Inverted Residual Block: Before fusion \n\n', float_model.features[1].conv)
float_model.eval()

# Fuses modules
float_model.fuse_model()

# Note fusion of Conv+BN+Relu and Conv+Relu
print('\n Inverted Residual Block: After fusion\n\n',float_model.features[1].conv)

最后,为了获得 “baseline” 准确率,让我们看看未量化模型的准确率 带熔融模块

num_eval_batches = 1000

print("Size of baseline model")
print_size_of_model(float_model)

top1, top5 = evaluate(float_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))
torch.jit.save(torch.jit.script(float_model), saved_model_dir + scripted_float_model_file)

在整个模型上,我们在 50,000 张图像的 eval 数据集上获得了 71.9% 的准确率。

这将是我们要比较的基线。接下来,我们来尝试不同的量化方法

4. 训练后静态量化

训练后静态量化不仅涉及将权重从 float 转换为 int, 与动态量化一样,但也执行第一个进料批次的附加步骤 的数据,并计算不同激活的结果分布 (具体来说,这是通过在记录此内容的不同点插入 observer 模块来完成的 数据)。然后,这些分布将用于确定具体不同的激活 应该在推理时进行量化(一个简单的技术是简单地划分整个范围 的激活次数增加到 256 个级别,但我们也支持更复杂的方法)。重要地 这个额外的步骤允许我们在操作之间传递量化值,而不是转换这些值 values 设置为 floats - 然后返回到 ints - 从而显着加快速度。

num_calibration_batches = 32

myModel = load_model(saved_model_dir + float_model_file).to('cpu')
myModel.eval()

# Fuse Conv, bn and relu
myModel.fuse_model()

# Specify quantization configuration
# Start with simple min/max range estimation and per-tensor quantization of weights
myModel.qconfig = torch.ao.quantization.default_qconfig
print(myModel.qconfig)
torch.ao.quantization.prepare(myModel, inplace=True)

# Calibrate first
print('Post Training Quantization Prepare: Inserting Observers')
print('\n Inverted Residual Block:After observer insertion \n\n', myModel.features[1].conv)

# Calibrate with the training set
evaluate(myModel, criterion, data_loader, neval_batches=num_calibration_batches)
print('Post Training Quantization: Calibration done')

# Convert to quantized model
torch.ao.quantization.convert(myModel, inplace=True)
# You may see a user warning about needing to calibrate the model. This warning can be safely ignored.
# This warning occurs because not all modules are run in each model runs, so some
# modules may not be calibrated.
print('Post Training Quantization: Convert done')
print('\n Inverted Residual Block: After fusion and quantization, note fused modules: \n\n',myModel.features[1].conv)

print("Size of model after quantization")
print_size_of_model(myModel)

top1, top5 = evaluate(myModel, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))

对于这个量化模型,我们在 eval 数据集上看到的准确率为 56.7%。这是因为我们使用了一个简单的 min/max 观察器来确定量化参数。尽管如此,我们还是将模型的大小缩小到略低于 3.6 MB,几乎减少了 4 倍。

此外,我们可以简单地使用不同的 量化配置。我们使用建议的配置重复相同的练习 x86 架构的量化。此配置执行以下操作:

  • 基于每个通道量化权重

  • 使用直方图观察器收集激活的直方图,然后选择 量化参数。

per_channel_quantized_model = load_model(saved_model_dir + float_model_file)
per_channel_quantized_model.eval()
per_channel_quantized_model.fuse_model()
# The old 'fbgemm' is still available but 'x86' is the recommended default.
per_channel_quantized_model.qconfig = torch.ao.quantization.get_default_qconfig('x86')
print(per_channel_quantized_model.qconfig)

torch.ao.quantization.prepare(per_channel_quantized_model, inplace=True)
evaluate(per_channel_quantized_model,criterion, data_loader, num_calibration_batches)
torch.ao.quantization.convert(per_channel_quantized_model, inplace=True)
top1, top5 = evaluate(per_channel_quantized_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))
torch.jit.save(torch.jit.script(per_channel_quantized_model), saved_model_dir + scripted_quantized_model_file)

仅更改此量化配置方法会导致 的准确率达到 67.3% 以上!尽管如此,这比上述 71.9% 的基线低 4%。 那么,让我们尝试量化感知训练。

5. 量化感知训练

量化感知训练 (QAT) 是一种通常具有最高准确性的量化方法。 使用 QAT 时,所有权重和激活在 训练:也就是说,浮点值被四舍五入以模拟 int8 值,但所有计算仍然使用 浮点数。因此,训练期间的所有体重调整都是在“意识到”这一事实的情况下进行的 模型最终将被量化;因此,量化后,这种方法通常会产生 比动态量化或训练后静态量化的准确度更高。

实际执行 QAT 的整体工作流程与以前非常相似:

  • 我们可以使用和以前一样的模型:量化感知不需要额外的准备工作 训练。

  • 我们需要使用 a 来指定在权重后插入什么样的假量化 和 activations,而不是指定观察者qconfig

我们首先定义一个训练函数:

def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
    model.train()
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    avgloss = AverageMeter('Loss', '1.5f')

    cnt = 0
    for image, target in data_loader:
        start_time = time.time()
        print('.', end = '')
        cnt += 1
        image, target = image.to(device), target.to(device)
        output = model(image)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        top1.update(acc1[0], image.size(0))
        top5.update(acc5[0], image.size(0))
        avgloss.update(loss, image.size(0))
        if cnt >= ntrain_batches:
            print('Loss', avgloss.avg)

            print('Training: * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
                  .format(top1=top1, top5=top5))
            return

    print('Full imagenet train set:  * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
          .format(top1=top1, top5=top5))
    return

我们像以前一样融合模块

qat_model = load_model(saved_model_dir + float_model_file)
qat_model.fuse_model(is_qat=True)

optimizer = torch.optim.SGD(qat_model.parameters(), lr = 0.0001)
# The old 'fbgemm' is still available but 'x86' is the recommended default.
qat_model.qconfig = torch.ao.quantization.get_default_qat_qconfig('x86')

最后,执行 “假量化”,为量化感知训练准备模型prepare_qat

torch.ao.quantization.prepare_qat(qat_model, inplace=True)
print('Inverted Residual Block: After preparation for QAT, note fake-quantization modules \n',qat_model.features[1].conv)

训练具有高精度的量化模型需要对数值进行精确建模 推理。因此,对于量化感知训练,我们通过以下方式修改训练循环:

  • 将 batch norm 切换为使用运行均值,并在训练结束时使用 Variance 以更好地 match inference numerics 的 Matching Inference Numerics。

  • 我们还冻结了量化器参数(scale 和 zero-point)并微调权重。

num_train_batches = 20

# QAT takes time and one needs to train over a few epochs.
# Train and check accuracy after each epoch
for nepoch in range(8):
    train_one_epoch(qat_model, criterion, optimizer, data_loader, torch.device('cpu'), num_train_batches)
    if nepoch > 3:
        # Freeze quantizer parameters
        qat_model.apply(torch.ao.quantization.disable_observer)
    if nepoch > 2:
        # Freeze batch norm mean and variance estimates
        qat_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)

    # Check the accuracy after each epoch
    quantized_model = torch.ao.quantization.convert(qat_model.eval(), inplace=False)
    quantized_model.eval()
    top1, top5 = evaluate(quantized_model,criterion, data_loader_test, neval_batches=num_eval_batches)
    print('Epoch %d :Evaluation accuracy on %d images, %2.2f'%(nepoch, num_eval_batches * eval_batch_size, top1.avg))

量化感知训练在整个 imagenet 数据集上的准确率超过 71.5%,接近 71.9% 的浮点准确率。

有关量化感知训练的更多信息:

  • QAT 是一组超强的训练后量化技术,允许进行更多调试。 例如,我们可以分析模型的准确性是否受到权重或激活的限制 量化。

  • 我们还可以在浮点中模拟量化模型的精度,因为 我们正在使用假量化来模拟实际量化算术的数值。

  • 我们也可以很容易地模拟训练后量化。

量化加速

最后,让我们确认一下我们上面提到的事情:我们的量化模型真的执行推理吗 更快?让我们测试一下:

def run_benchmark(model_file, img_loader):
    elapsed = 0
    model = torch.jit.load(model_file)
    model.eval()
    num_batches = 5
    # Run the scripted model on a few batches of images
    for i, (images, target) in enumerate(img_loader):
        if i < num_batches:
            start = time.time()
            output = model(images)
            end = time.time()
            elapsed = elapsed + (end-start)
        else:
            break
    num_images = images.size()[0] * num_batches

    print('Elapsed time: %3.0f ms' % (elapsed/num_images*1000))
    return elapsed

run_benchmark(saved_model_dir + scripted_float_model_file, data_loader_test)

run_benchmark(saved_model_dir + scripted_quantized_model_file, data_loader_test)

在 MacBook pro 上本地运行此命令会产生 61 毫秒的常规型号,而 量化模型仅需 20 毫秒,典型的加速为 2-4 倍 我们看到量化模型与浮点模型的比较。

结论

在本教程中,我们展示了两种量化方法 - 训练后静态量化、 以及量化感知训练 - 描述他们“幕后”做什么以及如何使用 它们在 PyTorch 中。

感谢阅读!与往常一样,我们欢迎任何反馈,因此如果您有任何问题,请在此处创建一个问题。

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源