目录

了解基础知识 ||快速入门 ||张量 ||数据集和数据加载器 ||变换 ||构建模型 ||Autograd ||优化 ||保存并加载模型

变换

创建时间: Feb 09, 2021 |上次更新时间:2021 年 8 月 11 日 |上次验证时间:未验证

数据并不总是以所需的最终处理形式出现 训练机器学习算法。我们使用 transform 来执行一些 操作数据并使其适合训练。

所有 TorchVision 数据集都有两个参数 - 修改特征和修改标签 - 接受包含转换逻辑的可调用对象。 torchvision.transforms 模块提供 几个开箱即用的常用转换。transformtarget_transform

FashionMNIST 功能采用 PIL 图像格式,标签为整数。 对于训练,我们需要将特征作为标准化张量,将标签作为独热编码张量。 为了进行这些转换,我们使用 和 。ToTensorLambda

import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

ds = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
    target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz

  0%|          | 0.00/26.4M [00:00<?, ?B/s]
  0%|          | 65.5k/26.4M [00:00<01:12, 364kB/s]
  1%|          | 229k/26.4M [00:00<00:38, 685kB/s]
  4%|3         | 950k/26.4M [00:00<00:11, 2.20MB/s]
 15%|#4        | 3.83M/26.4M [00:00<00:02, 7.65MB/s]
 37%|###7      | 9.90M/26.4M [00:00<00:00, 17.0MB/s]
 59%|#####9    | 15.7M/26.4M [00:01<00:00, 22.1MB/s]
 82%|########1 | 21.7M/26.4M [00:01<00:00, 30.1MB/s]
 95%|#########5| 25.1M/26.4M [00:01<00:00, 26.7MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.4MB/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz

  0%|          | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 322kB/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz

  0%|          | 0.00/4.42M [00:00<?, ?B/s]
  1%|1         | 65.5k/4.42M [00:00<00:12, 363kB/s]
  5%|5         | 229k/4.42M [00:00<00:06, 681kB/s]
 19%|#9        | 852k/4.42M [00:00<00:01, 2.42MB/s]
 44%|####3     | 1.93M/4.42M [00:00<00:00, 4.13MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.08MB/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz

  0%|          | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 34.0MB/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw

ToTensor()

ToTensor 将 PIL 图像或 NumPy 转换为 .和秤 图像的像素强度值在 [0., 1.] 范围内。ndarrayFloatTensor

Lambda 转换

Lambda 转换应用任何用户定义的 lambda 函数。在这里,我们定义了一个函数 将整数转换为 one-hot 编码张量。 它首先创建一个大小为 10 的零张量(我们数据集中的标签数量)并调用 scatter_ 在标签 .value=1y

target_transform = Lambda(lambda y: torch.zeros(
    10, dtype=torch.float).scatter_(dim=0, index=torch.tensor(y), value=1))

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源