注意
单击此处下载完整的示例代码
了解基础知识 ||快速入门 ||张量 ||数据集和数据加载器 ||变换 ||构建模型 ||Autograd ||优化 ||保存并加载模型
变换¶
创建时间: Feb 09, 2021 |上次更新时间:2021 年 8 月 11 日 |上次验证时间:未验证
数据并不总是以所需的最终处理形式出现 训练机器学习算法。我们使用 transform 来执行一些 操作数据并使其适合训练。
所有 TorchVision 数据集都有两个参数 - 修改特征和修改标签 - 接受包含转换逻辑的可调用对象。
torchvision.transforms 模块提供
几个开箱即用的常用转换。transform
target_transform
FashionMNIST 功能采用 PIL 图像格式,标签为整数。
对于训练,我们需要将特征作为标准化张量,将标签作为独热编码张量。
为了进行这些转换,我们使用 和 。ToTensor
Lambda
import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
ds = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz
0%| | 0.00/26.4M [00:00<?, ?B/s]
0%| | 65.5k/26.4M [00:00<01:12, 364kB/s]
1%| | 229k/26.4M [00:00<00:38, 685kB/s]
4%|3 | 950k/26.4M [00:00<00:11, 2.20MB/s]
15%|#4 | 3.83M/26.4M [00:00<00:02, 7.65MB/s]
37%|###7 | 9.90M/26.4M [00:00<00:00, 17.0MB/s]
59%|#####9 | 15.7M/26.4M [00:01<00:00, 22.1MB/s]
82%|########1 | 21.7M/26.4M [00:01<00:00, 30.1MB/s]
95%|#########5| 25.1M/26.4M [00:01<00:00, 26.7MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.4MB/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 322kB/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0.00/4.42M [00:00<?, ?B/s]
1%|1 | 65.5k/4.42M [00:00<00:12, 363kB/s]
5%|5 | 229k/4.42M [00:00<00:06, 681kB/s]
19%|#9 | 852k/4.42M [00:00<00:01, 2.42MB/s]
44%|####3 | 1.93M/4.42M [00:00<00:00, 4.13MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.08MB/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 34.0MB/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw
Lambda 转换¶
Lambda 转换应用任何用户定义的 lambda 函数。在这里,我们定义了一个函数
将整数转换为 one-hot 编码张量。
它首先创建一个大小为 10 的零张量(我们数据集中的标签数量)并调用 scatter_ 在标签 .value=1
y
target_transform = Lambda(lambda y: torch.zeros(
10, dtype=torch.float).scatter_(dim=0, index=torch.tensor(y), value=1))