注意
单击此处下载完整的示例代码
简介 ||张量 ||Autograd ||建筑模型 ||TensorBoard 支持 ||训练模型 ||模型理解
使用 PyTorch 进行训练¶
创建时间: 2021年11月30日 |最后更新时间:2023 年 5 月 31 日 |上次验证: Nov 05, 2024
请跟随下面的视频或在 youtube 上观看。
介绍¶
在过去的视频中,我们讨论并演示了:
使用 torch.nn 模块的神经网络层和函数构建模型
自动梯度计算的机制,这是 基于梯度的模型训练
使用 TensorBoard 可视化训练进度和其他活动
在本视频中,我们将向您的库存中添加一些新工具:
我们将熟悉 dataset 和 dataloader 抽象,以及如何 它们简化了在训练循环期间向模型提供数据的过程
我们将讨论特定的损失函数以及何时使用它们
我们将看看 PyTorch 优化器,它们实现了调整 基于损失函数结果的模型权重
最后,我们将所有这些放在一起,看到一个完整的 PyTorch 训练循环的实际应用。
数据集和 DataLoader¶
的 and 类封装了
从存储中提取数据并将其公开给 Training Loop
批次。Dataset
DataLoader
负责访问和处理单个
数据实例。Dataset
从
自动或使用您定义的采样器)将它们收集到
batchs,并返回它们以供训练循环使用。适用于各种数据集,无论类型如何
它们包含的数据。DataLoader
Dataset
DataLoader
在本教程中,我们将使用 Fashion-MNIST 数据集,该数据集由
TorchVision 的 TorchVision 中。我们过去常常
zero-center 并规范化图像瓦片内容的分布,
并下载训练和验证数据拆分。torchvision.transforms.Normalize()
import torch
import torchvision
import torchvision.transforms as transforms
# PyTorch TensorBoard support
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
# Create datasets for training & validation, download if necessary
training_set = torchvision.datasets.FashionMNIST('./data', train=True, transform=transform, download=True)
validation_set = torchvision.datasets.FashionMNIST('./data', train=False, transform=transform, download=True)
# Create data loaders for our datasets; shuffle for training, not for validation
training_loader = torch.utils.data.DataLoader(training_set, batch_size=4, shuffle=True)
validation_loader = torch.utils.data.DataLoader(validation_set, batch_size=4, shuffle=False)
# Class labels
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')
# Report split sizes
print('Training set has {} instances'.format(len(training_set)))
print('Validation set has {} instances'.format(len(validation_set)))
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ./data/FashionMNIST/raw/train-images-idx3-ubyte.gz
0%| | 0.00/26.4M [00:00<?, ?B/s]
0%| | 65.5k/26.4M [00:00<01:12, 362kB/s]
1%| | 197k/26.4M [00:00<00:45, 575kB/s]
3%|3 | 852k/26.4M [00:00<00:13, 1.96MB/s]
13%|#2 | 3.41M/26.4M [00:00<00:03, 6.75MB/s]
32%|###1 | 8.39M/26.4M [00:00<00:01, 17.0MB/s]
41%|#### | 10.7M/26.4M [00:00<00:00, 15.7MB/s]
64%|######3 | 16.8M/26.4M [00:01<00:00, 22.1MB/s]
85%|########5 | 22.5M/26.4M [00:01<00:00, 29.6MB/s]
98%|#########8| 25.9M/26.4M [00:01<00:00, 26.2MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 18.2MB/s]
Extracting ./data/FashionMNIST/raw/train-images-idx3-ubyte.gz to ./data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ./data/FashionMNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 326kB/s]
Extracting ./data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ./data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ./data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0.00/4.42M [00:00<?, ?B/s]
1%|1 | 65.5k/4.42M [00:00<00:12, 360kB/s]
4%|4 | 197k/4.42M [00:00<00:05, 731kB/s]
11%|#1 | 492k/4.42M [00:00<00:03, 1.28MB/s]
37%|###7 | 1.64M/4.42M [00:00<00:00, 4.18MB/s]
87%|########6 | 3.83M/4.42M [00:00<00:00, 8.02MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.06MB/s]
Extracting ./data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ./data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ./data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 41.4MB/s]
Extracting ./data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/FashionMNIST/raw
Training set has 60000 instances
Validation set has 10000 instances
与往常一样,让我们将数据可视化为健全性检查:
import matplotlib.pyplot as plt
import numpy as np
# Helper function for inline image display
def matplotlib_imshow(img, one_channel=False):
if one_channel:
img = img.mean(dim=0)
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
if one_channel:
plt.imshow(npimg, cmap="Greys")
else:
plt.imshow(np.transpose(npimg, (1, 2, 0)))
dataiter = iter(training_loader)
images, labels = next(dataiter)
# Create a grid from the images and show them
img_grid = torchvision.utils.make_grid(images)
matplotlib_imshow(img_grid, one_channel=True)
print(' '.join(classes[labels[j]] for j in range(4)))
Sandal Sneaker Coat Sneaker
模型¶
我们在这个例子中使用的模型是 LeNet-5 的变体 - 它应该 如果您观看过本系列中的前几个视频,请熟悉。
import torch.nn as nn
import torch.nn.functional as F
# PyTorch models inherit from torch.nn.Module
class GarmentClassifier(nn.Module):
def __init__(self):
super(GarmentClassifier, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = GarmentClassifier()
损失函数¶
在此示例中,我们将使用交叉熵损失。用于演示 目的,我们将创建批量的虚拟输出和标签值,运行 他们通过损失函数,并检查结果。
loss_fn = torch.nn.CrossEntropyLoss()
# NB: Loss functions expect data in batches, so we're creating batches of 4
# Represents the model's confidence in each of the 10 classes for a given input
dummy_outputs = torch.rand(4, 10)
# Represents the correct class among the 10 being tested
dummy_labels = torch.tensor([1, 5, 3, 7])
print(dummy_outputs)
print(dummy_labels)
loss = loss_fn(dummy_outputs, dummy_labels)
print('Total loss for this batch: {}'.format(loss.item()))
tensor([[0.7026, 0.1489, 0.0065, 0.6841, 0.4166, 0.3980, 0.9849, 0.6701, 0.4601,
0.8599],
[0.7461, 0.3920, 0.9978, 0.0354, 0.9843, 0.0312, 0.5989, 0.2888, 0.8170,
0.4150],
[0.8408, 0.5368, 0.0059, 0.8931, 0.3942, 0.7349, 0.5500, 0.0074, 0.0554,
0.1537],
[0.7282, 0.8755, 0.3649, 0.4566, 0.8796, 0.2390, 0.9865, 0.7549, 0.9105,
0.5427]])
tensor([1, 5, 3, 7])
Total loss for this batch: 2.428950071334839
优化¶
在此示例中,我们将使用简单的随机梯度 以势头下降。
尝试此优化的一些变体可能很有指导意义 方案:
学习率确定优化器的步骤大小 需要。不同的学习率对您的培训有什么影响 结果,在准确性和收敛时间方面?
Momentum 将优化器推向 Gradient 最强的方向 多个步骤。更改此值对结果有什么影响?
尝试一些不同的优化算法,例如 averaged SGD、Adagrad 或 亚当。您的结果有何不同?
# Optimizers specified in the torch.optim package
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
训练循环¶
下面,我们有一个执行一个训练 epoch 的函数。它 枚举来自 DataLoader 的数据,并在循环的每一次传递中 以下内容:
从 DataLoader 获取一批训练数据
将优化器的梯度归零
执行推理 - 即,从模型中获取输入批次的预测
计算该预测集与数据集上标签的损失
计算学习权重的向后梯度
告诉优化器执行一个学习步骤 - 即,调整模型的 根据该批次的观测梯度学习权重,根据 我们选择的优化算法
它报告每 1000 个批次的损失。
最后,它报告最后一个 1000 个批次,用于与验证运行进行比较
def train_one_epoch(epoch_index, tb_writer):
running_loss = 0.
last_loss = 0.
# Here, we use enumerate(training_loader) instead of
# iter(training_loader) so that we can track the batch
# index and do some intra-epoch reporting
for i, data in enumerate(training_loader):
# Every data instance is an input + label pair
inputs, labels = data
# Zero your gradients for every batch!
optimizer.zero_grad()
# Make predictions for this batch
outputs = model(inputs)
# Compute the loss and its gradients
loss = loss_fn(outputs, labels)
loss.backward()
# Adjust learning weights
optimizer.step()
# Gather data and report
running_loss += loss.item()
if i % 1000 == 999:
last_loss = running_loss / 1000 # loss per batch
print(' batch {} loss: {}'.format(i + 1, last_loss))
tb_x = epoch_index * len(training_loader) + i + 1
tb_writer.add_scalar('Loss/train', last_loss, tb_x)
running_loss = 0.
return last_loss
每个 Epoch 活动¶
我们希望在每个 epoch 中执行一次以下操作:
通过检查一组数据的相对损失来执行验证,而 用于培训,并报告此
保存模型的副本
在这里,我们将在 TensorBoard 中执行报告。这将需要转到 用于启动 TensorBoard 的命令行,并在另一个浏览器中打开它 标签。
# Initializing in a separate cell so we can easily add more epochs to the same run
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter('runs/fashion_trainer_{}'.format(timestamp))
epoch_number = 0
EPOCHS = 5
best_vloss = 1_000_000.
for epoch in range(EPOCHS):
print('EPOCH {}:'.format(epoch_number + 1))
# Make sure gradient tracking is on, and do a pass over the data
model.train(True)
avg_loss = train_one_epoch(epoch_number, writer)
running_vloss = 0.0
# Set the model to evaluation mode, disabling dropout and using population
# statistics for batch normalization.
model.eval()
# Disable gradient computation and reduce memory consumption.
with torch.no_grad():
for i, vdata in enumerate(validation_loader):
vinputs, vlabels = vdata
voutputs = model(vinputs)
vloss = loss_fn(voutputs, vlabels)
running_vloss += vloss
avg_vloss = running_vloss / (i + 1)
print('LOSS train {} valid {}'.format(avg_loss, avg_vloss))
# Log the running loss averaged per batch
# for both training and validation
writer.add_scalars('Training vs. Validation Loss',
{ 'Training' : avg_loss, 'Validation' : avg_vloss },
epoch_number + 1)
writer.flush()
# Track best performance, and save the model's state
if avg_vloss < best_vloss:
best_vloss = avg_vloss
model_path = 'model_{}_{}'.format(timestamp, epoch_number)
torch.save(model.state_dict(), model_path)
epoch_number += 1
EPOCH 1:
batch 1000 loss: 1.6334228584356607
batch 2000 loss: 0.8325267538074403
batch 3000 loss: 0.7359380583595484
batch 4000 loss: 0.6198329215242994
batch 5000 loss: 0.6000315657821484
batch 6000 loss: 0.555109024874866
batch 7000 loss: 0.5260250487388112
batch 8000 loss: 0.4973462742221891
batch 9000 loss: 0.4781935699362075
batch 10000 loss: 0.47880298678041433
batch 11000 loss: 0.45598648857555235
batch 12000 loss: 0.4327470133750467
batch 13000 loss: 0.41800182418141046
batch 14000 loss: 0.4115047634313814
batch 15000 loss: 0.4211296908891527
LOSS train 0.4211296908891527 valid 0.414460688829422
EPOCH 2:
batch 1000 loss: 0.3879808729066281
batch 2000 loss: 0.35912817339546743
batch 3000 loss: 0.38074520684120944
batch 4000 loss: 0.3614532373107213
batch 5000 loss: 0.36850082185724753
batch 6000 loss: 0.3703581801643886
batch 7000 loss: 0.38547042514081115
batch 8000 loss: 0.37846584360170527
batch 9000 loss: 0.3341486988377292
batch 10000 loss: 0.3433013284947956
batch 11000 loss: 0.35607743899174965
batch 12000 loss: 0.3499939931873523
batch 13000 loss: 0.33874178926000603
batch 14000 loss: 0.35130289171106416
batch 15000 loss: 0.3394507191307202
LOSS train 0.3394507191307202 valid 0.3581162691116333
EPOCH 3:
batch 1000 loss: 0.3319729989422485
batch 2000 loss: 0.29558994361863006
batch 3000 loss: 0.3107374766407593
batch 4000 loss: 0.3298987646112146
batch 5000 loss: 0.30858693152241906
batch 6000 loss: 0.33916381367447684
batch 7000 loss: 0.3105102765217889
batch 8000 loss: 0.3011080777524912
batch 9000 loss: 0.3142058177240979
batch 10000 loss: 0.31458891937109
batch 11000 loss: 0.31527258940579483
batch 12000 loss: 0.31501667268342864
batch 13000 loss: 0.3011875962628328
batch 14000 loss: 0.30012811454350596
batch 15000 loss: 0.31833117976446373
LOSS train 0.31833117976446373 valid 0.3307691514492035
EPOCH 4:
batch 1000 loss: 0.2786161053752294
batch 2000 loss: 0.27965198021690596
batch 3000 loss: 0.28595415444140965
batch 4000 loss: 0.292985666413857
batch 5000 loss: 0.3069892351147719
batch 6000 loss: 0.29902250939945224
batch 7000 loss: 0.2863366014406201
batch 8000 loss: 0.2655441066541243
batch 9000 loss: 0.3045048695363293
batch 10000 loss: 0.27626545656517554
batch 11000 loss: 0.2808379335970967
batch 12000 loss: 0.29241049340573955
batch 13000 loss: 0.28030834131941446
batch 14000 loss: 0.2983542350126445
batch 15000 loss: 0.3009556676162611
LOSS train 0.3009556676162611 valid 0.41686952114105225
EPOCH 5:
batch 1000 loss: 0.2614263167564495
batch 2000 loss: 0.2587047562422049
batch 3000 loss: 0.2642477260621345
batch 4000 loss: 0.2825975873669813
batch 5000 loss: 0.26987933717705165
batch 6000 loss: 0.2759250026817317
batch 7000 loss: 0.26055969463163275
batch 8000 loss: 0.29164007206353565
batch 9000 loss: 0.2893096504513578
batch 10000 loss: 0.2486029507305684
batch 11000 loss: 0.2732803234480907
batch 12000 loss: 0.27927226484491985
batch 13000 loss: 0.2686819267635074
batch 14000 loss: 0.24746483912148323
batch 15000 loss: 0.27903492261294194
LOSS train 0.27903492261294194 valid 0.31206756830215454
要加载模型的已保存版本:
saved_model = GarmentClassifier()
saved_model.load_state_dict(torch.load(PATH))
加载模型后,它就可以满足你的任何需求了 - 更多的训练、推理或分析。
请注意,如果您的模型具有影响模型的 constructor 参数 结构,您需要提供它们并配置模型 与保存时的状态相同。
其他资源¶
数据文档 实用程序,包括 数据集和 DataLoader,pytorch.org
关于使用 pinned 的说明 用于 GPU 训练的内存
有关 TorchVision、TorchText 和 TorchAudio 中可用的数据集的文档
有关损失的文件 PyTorch 中可用的函数
有关 torch.optim文档 包,其中 包括优化器和相关工具,例如 Learning Rate 调度
的 Tutorials 部分 pytorch.org 包含以下教程 各种各样的训练任务,包括 不同领域 生成对抗网络 / 加固 学习等
脚本总运行时间:(5 分 0.727 秒)