目录

StreamReader 高级用法

作者Moto Hira

本教程是 StreamReader 基本用法的延续。

这演示如何使用

  • 设备输入,例如麦克风、网络摄像头和屏幕录制

  • 生成合成音频/视频

  • 使用自定义筛选条件表达式应用预处理

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

import IPython
import matplotlib.pyplot as plt
from torchaudio.io import StreamReader

base_url = "https://download.pytorch.org/torchaudio/tutorial-assets"
AUDIO_URL = f"{base_url}/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4.mp4"
2.5.0
2.5.0

音频/视频设备输入

鉴于系统具有适当的媒体设备,并且 libavdevice 是 配置为使用设备,流式处理 API 可以 从这些设备中提取媒体流。

为此,我们将额外的参数传递给构造函数。 指定 Device 组件,而 Dictionary 特定于指定的组件。formatoptionformatoption

要传递的确切参数取决于系统配置。 有关详细信息,请参阅 https://ffmpeg.org/ffmpeg-devices.html

以下示例说明了如何在 MacBook Pro 上执行此操作。

首先,我们需要检查可用的设备。

$ ffmpeg -f avfoundation -list_devices true -i ""
[AVFoundation indev @ 0x143f04e50] AVFoundation video devices:
[AVFoundation indev @ 0x143f04e50] [0] FaceTime HD Camera
[AVFoundation indev @ 0x143f04e50] [1] Capture screen 0
[AVFoundation indev @ 0x143f04e50] AVFoundation audio devices:
[AVFoundation indev @ 0x143f04e50] [0] MacBook Pro Microphone

我们使用 FaceTime 高清摄像头作为视频设备(索引 0),使用 MacBook Pro 麦克风作为音频设备(索引 0)。

如果我们不传递 any ,则设备使用其默认的 配置。解码器可能不支持该配置。option

>>> StreamReader(
...     src="0:0",  # The first 0 means `FaceTime HD Camera`, and
...                 # the second 0 indicates `MacBook Pro Microphone`.
...     format="avfoundation",
... )
[avfoundation @ 0x125d4fe00] Selected framerate (29.970030) is not supported by the device.
[avfoundation @ 0x125d4fe00] Supported modes:
[avfoundation @ 0x125d4fe00]   1280x720@[1.000000 30.000000]fps
[avfoundation @ 0x125d4fe00]   640x480@[1.000000 30.000000]fps
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  ...
RuntimeError: Failed to open the input: 0:0

通过提供 ,我们可以更改设备的格式 流转换为 Decoder 支持的格式。option

>>> streamer = StreamReader(
...     src="0:0",
...     format="avfoundation",
...     option={"framerate": "30", "pixel_format": "bgr0"},
... )
>>> for i in range(streamer.num_src_streams):
...     print(streamer.get_src_stream_info(i))
SourceVideoStream(media_type='video', codec='rawvideo', codec_long_name='raw video', format='bgr0', bit_rate=0, width=640, height=480, frame_rate=30.0)
SourceAudioStream(media_type='audio', codec='pcm_f32le', codec_long_name='PCM 32-bit floating point little-endian', format='flt', bit_rate=3072000, sample_rate=48000.0, num_channels=2)

合成源流

作为设备集成的一部分,ffmpeg 提供了一个 “虚拟设备” 接口。此接口提供合成音频/视频数据 生成。

为此,我们设置并提供过滤器描述 自。format=lavfisrc

过滤器描述的详细信息可以在 https://ffmpeg.org/ffmpeg-filters.html 中找到

音频示例

正弦波

https://ffmpeg.org/ffmpeg-filters.html#sine

StreamReader(src="sine=sample_rate=8000:frequency=360", format="lavfi")

具有任意表达式的信号

https://ffmpeg.org/ffmpeg-filters.html#aevalsrc

# 5 Hz binaural beats on a 360 Hz carrier
StreamReader(
    src=(
        'aevalsrc='
        'sample_rate=8000:'
        'exprs=0.1*sin(2*PI*(360-5/2)*t)|0.1*sin(2*PI*(360+5/2)*t)'
    ),
    format='lavfi',
 )

噪声

https://ffmpeg.org/ffmpeg-filters.html#anoisesrc

StreamReader(src="anoisesrc=color=pink:sample_rate=8000:amplitude=0.5", format="lavfi")

视频示例

元胞自动机

https://ffmpeg.org/ffmpeg-filters.html#cellauto

StreamReader(src=f"cellauto", format="lavfi")

曼德布洛特

https://ffmpeg.org/ffmpeg-filters.html#cellauto

StreamReader(src=f"mandelbrot", format="lavfi")

MPlayer 测试模式

https://ffmpeg.org/ffmpeg-filters.html#mptestsrc

StreamReader(src=f"mptestsrc", format="lavfi")

约翰·康威的人生游戏

https://ffmpeg.org/ffmpeg-filters.html#life

StreamReader(src=f"life", format="lavfi")

谢尔宾斯基地毯/三角形分形

https://ffmpeg.org/ffmpeg-filters.html#sierpinski

StreamReader(src=f"sierpinski", format="lavfi")

自定义过滤器

在定义输出流时,您可以使用 and 方法。add_audio_stream()add_video_stream()

这些方法接受 argument,它是一个字符串 根据 FFMPEG 的 Filter 表达式进行格式设置。filter_desc

和 之间的区别在于,它构造筛选表达式并将其传递给相同的底层 实现。一切都可以 通过 实现。add_basic_(audio|video)_streamadd_(audio|video)_streamadd_basic_(audio|video)_streamadd_basic_(audio|video)_streamadd_(audio|video)_stream

注意

  • 应用自定义筛选条件时,客户端代码必须转换 音频/视频流为 TorchAudio 可以转换为 Tensor 格式。 例如,这可以通过应用于视频流和音频流来实现。format=pix_fmts=rgb24aformat=sample_fmts=fltp

  • 每个输出流都有单独的筛选器图。因此,它是 不能对 filter 表达式。但是,可以拆分一个输入 流式传输到多个 Film,并在以后合并它们。

音频示例

# fmt: off
descs = [
    # No filtering
    "anull",
    # Apply a highpass filter then a lowpass filter
    "highpass=f=200,lowpass=f=1000",
    # Manipulate spectrogram
    (
        "afftfilt="
        "real='hypot(re,im)*sin(0)':"
        "imag='hypot(re,im)*cos(0)':"
        "win_size=512:"
        "overlap=0.75"
    ),
    # Manipulate spectrogram
    (
        "afftfilt="
        "real='hypot(re,im)*cos((random(0)*2-1)*2*3.14)':"
        "imag='hypot(re,im)*sin((random(1)*2-1)*2*3.14)':"
        "win_size=128:"
        "overlap=0.8"
    ),
]
# fmt: on
sample_rate = 8000

streamer = StreamReader(AUDIO_URL)
for desc in descs:
    streamer.add_audio_stream(
        frames_per_chunk=40000,
        filter_desc=f"aresample={sample_rate},{desc},aformat=sample_fmts=fltp",
    )

chunks = next(streamer.stream())


def _display(i):
    print("filter_desc:", streamer.get_out_stream_info(i).filter_description)
    fig, axs = plt.subplots(2, 1)
    waveform = chunks[i][:, 0]
    axs[0].plot(waveform)
    axs[0].grid(True)
    axs[0].set_ylim([-1, 1])
    plt.setp(axs[0].get_xticklabels(), visible=False)
    axs[1].specgram(waveform, Fs=sample_rate)
    fig.tight_layout()
    return IPython.display.Audio(chunks[i].T, rate=sample_rate)

源语言

_display(0)
StreamReader 高级教程
filter_desc: aresample=8000,anull,aformat=sample_fmts=fltp


高通/低通滤波器

_display(1)
StreamReader 高级教程
filter_desc: aresample=8000,highpass=f=200,lowpass=f=1000,aformat=sample_fmts=fltp


FFT 滤波器 - 机器人 🤖

_display(2)
StreamReader 高级教程
filter_desc: aresample=8000,afftfilt=real='hypot(re,im)*sin(0)':imag='hypot(re,im)*cos(0)':win_size=512:overlap=0.75,aformat=sample_fmts=fltp


FFT 滤波器 - Whisper

_display(3)
StreamReader 高级教程
filter_desc: aresample=8000,afftfilt=real='hypot(re,im)*cos((random(0)*2-1)*2*3.14)':imag='hypot(re,im)*sin((random(1)*2-1)*2*3.14)':win_size=128:overlap=0.8,aformat=sample_fmts=fltp


视频示例

# fmt: off
descs = [
    # No effect
    "null",
    # Split the input stream and apply horizontal flip to the right half.
    (
        "split [main][tmp];"
        "[tmp] crop=iw/2:ih:0:0, hflip [flip];"
        "[main][flip] overlay=W/2:0"
    ),
    # Edge detection
    "edgedetect=mode=canny",
    # Rotate image by randomly and fill the background with brown
    "rotate=angle=-random(1)*PI:fillcolor=brown",
    # Manipulate pixel values based on the coordinate
    "geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'"
]
# fmt: on
streamer = StreamReader(VIDEO_URL)
for desc in descs:
    streamer.add_video_stream(
        frames_per_chunk=30,
        filter_desc=f"fps=10,{desc},format=pix_fmts=rgb24",
    )

streamer.seek(12)

chunks = next(streamer.stream())


def _display(i):
    print("filter_desc:", streamer.get_out_stream_info(i).filter_description)
    _, axs = plt.subplots(1, 3, figsize=(8, 1.9))
    chunk = chunks[i]
    for j in range(3):
        axs[j].imshow(chunk[10 * j + 1].permute(1, 2, 0))
        axs[j].set_axis_off()
    plt.tight_layout()

源语言

_display(0)
StreamReader 高级教程
filter_desc: fps=10,null,format=pix_fmts=rgb24

镜子

_display(1)
StreamReader 高级教程
filter_desc: fps=10,split [main][tmp];[tmp] crop=iw/2:ih:0:0, hflip [flip];[main][flip] overlay=W/2:0,format=pix_fmts=rgb24

边缘检测

_display(2)
StreamReader 高级教程
filter_desc: fps=10,edgedetect=mode=canny,format=pix_fmts=rgb24

随机旋转

_display(3)
StreamReader 高级教程
filter_desc: fps=10,rotate=angle=-random(1)*PI:fillcolor=brown,format=pix_fmts=rgb24

像素操作

_display(4)
StreamReader 高级教程
filter_desc: fps=10,geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)',format=pix_fmts=rgb24

标记:

脚本总运行时间:(0 分 18.695 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源