注意
单击此处下载完整的示例代码
音频特征提取¶
作者: Moto Hira
torchaudio
实现音频中常用的特征提取
域。它们在 和 中可用。torchaudio.functional
torchaudio.transforms
functional
将功能实现为独立函数。
他们是无国籍的。
transforms
将功能实现为对象,
using implementations from 和 .
可以使用 TorchScript 对它们进行序列化。functional
torch.nn.Module
import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T
print(torch.__version__)
print(torchaudio.__version__)
import librosa
import matplotlib.pyplot as plt
2.5.0
2.5.0
音频功能概述¶
下图显示了常见音频功能之间的关系 和 torchaudio API 来生成它们。
![https://download.pytorch.org/torchaudio/tutorial-assets/torchaudio_feature_extractions.png](https://download.pytorch.org/torchaudio/tutorial-assets/torchaudio_feature_extractions.png)
有关可用功能的完整列表,请参阅 文档。
制备¶
注意
在 Google Colab 中运行本教程时,请安装所需的软件包
!pip install librosa
from IPython.display import Audio
from matplotlib.patches import Rectangle
from torchaudio.utils import download_asset
torch.random.manual_seed(0)
SAMPLE_SPEECH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
def plot_waveform(waveform, sr, title="Waveform", ax=None):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
time_axis = torch.arange(0, num_frames) / sr
if ax is None:
_, ax = plt.subplots(num_channels, 1)
ax.plot(time_axis, waveform[0], linewidth=1)
ax.grid(True)
ax.set_xlim([0, time_axis[-1]])
ax.set_title(title)
def plot_spectrogram(specgram, title=None, ylabel="freq_bin", ax=None):
if ax is None:
_, ax = plt.subplots(1, 1)
if title is not None:
ax.set_title(title)
ax.set_ylabel(ylabel)
ax.imshow(librosa.power_to_db(specgram), origin="lower", aspect="auto", interpolation="nearest")
def plot_fbank(fbank, title=None):
fig, axs = plt.subplots(1, 1)
axs.set_title(title or "Filter bank")
axs.imshow(fbank, aspect="auto")
axs.set_ylabel("frequency bin")
axs.set_xlabel("mel bin")
光谱图¶
# Load audio
SPEECH_WAVEFORM, SAMPLE_RATE = torchaudio.load(SAMPLE_SPEECH)
# Define transform
spectrogram = T.Spectrogram(n_fft=512)
# Perform transform
spec = spectrogram(SPEECH_WAVEFORM)
fig, axs = plt.subplots(2, 1)
plot_waveform(SPEECH_WAVEFORM, SAMPLE_RATE, title="Original waveform", ax=axs[0])
plot_spectrogram(spec[0], title="spectrogram", ax=axs[1])
fig.tight_layout()
![原始波形、三维频谱图](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_001.png)
Audio(SPEECH_WAVEFORM.numpy(), rate=SAMPLE_RATE)
参数n_fft
¶
频谱图计算的核心是(短期)傅里叶变换,
,该参数对应于以下中的 \(N\)
Descrete Fourier 变换的定义。n_fft
$$ X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N} nk} $$
(有关傅里叶变换的详细信息,请参阅维基百科。
的值决定了频率轴的分辨率。
但是,值越高,能量将被分配
在更多的 bin 中,因此当您可视化它时,它可能看起来更模糊。
甚至认为它们具有更高的分辨率。n_fft
n_fft
下面说明了这一点;
注意
hop_length
确定时间轴分辨率。
默认情况下,(即 以及),
使用 的值。
在这里,我们在不同的 value 中使用相同的值,以便它们在时间轴上具有相同数量的 elemet。hop_length=None
win_length=None
n_fft // 4
hop_length
n_fft
n_ffts = [32, 128, 512, 2048]
hop_length = 64
specs = []
for n_fft in n_ffts:
spectrogram = T.Spectrogram(n_fft=n_fft, hop_length=hop_length)
spec = spectrogram(SPEECH_WAVEFORM)
specs.append(spec)
![音频特征提取教程](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_002.png)
在比较信号时,希望使用相同的采样率,
但是,如果您必须使用不同的采样率,则必须小心
用于解释 的含义。
确定频率分辨率的 Recall
轴。换句话说,每个 bin on
表示的频率轴受采样率的影响。n_fft
n_fft
正如我们上面看到的,更改 的值不会改变
相同输入信号的频率范围覆盖范围。n_fft
让我们对音频进行下采样并应用具有相同值的频谱图。n_fft
# Downsample to half of the original sample rate
speech2 = torchaudio.functional.resample(SPEECH_WAVEFORM, SAMPLE_RATE, SAMPLE_RATE // 2)
# Upsample to the original sample rate
speech3 = torchaudio.functional.resample(speech2, SAMPLE_RATE // 2, SAMPLE_RATE)
# Apply the same spectrogram
spectrogram = T.Spectrogram(n_fft=512)
spec0 = spectrogram(SPEECH_WAVEFORM)
spec2 = spectrogram(speech2)
spec3 = spectrogram(speech3)
# Visualize it
fig, axs = plt.subplots(3, 1)
plot_spectrogram(spec0[0], ylabel="Original", ax=axs[0])
axs[0].add_patch(Rectangle((0, 3), 212, 128, edgecolor="r", facecolor="none"))
plot_spectrogram(spec2[0], ylabel="Downsampled", ax=axs[1])
plot_spectrogram(spec3[0], ylabel="Upsampled", ax=axs[2])
fig.tight_layout()
![音频特征提取教程](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_003.png)
在上面的可视化效果中,第二个图 (“Downsampled”) 可能 给人一种频谱图被拉伸的印象。 这是因为频率区间的含义与 原来的那个。 尽管它们具有相同的 bin 数量,但在第二个图中, 频率仅覆盖原始采样的一半 率。 如果我们再次对下采样的信号进行重新采样,这一点会变得更加明显 ,使其具有与原始采样率相同的采样率。
格里芬林¶
必须使用用于 spectrograph 的同一组参数。
# Define transforms
n_fft = 1024
spectrogram = T.Spectrogram(n_fft=n_fft)
griffin_lim = T.GriffinLim(n_fft=n_fft)
# Apply the transforms
spec = spectrogram(SPEECH_WAVEFORM)
reconstructed_waveform = griffin_lim(spec)
_, axes = plt.subplots(2, 1, sharex=True, sharey=True)
plot_waveform(SPEECH_WAVEFORM, SAMPLE_RATE, title="Original", ax=axes[0])
plot_waveform(reconstructed_waveform, SAMPLE_RATE, title="Reconstructed", ax=axes[1])
Audio(reconstructed_waveform, rate=SAMPLE_RATE)
![原始的、重建的](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_004.png)
梅尔滤波器组¶
生成滤波器组
用于将频率 bin 转换为 mel-scale bin 。
n_fft = 256
n_mels = 64
sample_rate = 6000
mel_filters = F.melscale_fbanks(
int(n_fft // 2 + 1),
n_mels=n_mels,
f_min=0.0,
f_max=sample_rate / 2.0,
sample_rate=sample_rate,
norm="slaney",
)
plot_fbank(mel_filters, "Mel Filter Bank - torchaudio")
![Mel 滤波器组 - torchaudio](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_005.png)
与 librosa 的比较¶
作为参考,这是获取 mel 滤波器组的等效方法
跟。librosa
mel_filters_librosa = librosa.filters.mel(
sr=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
fmin=0.0,
fmax=sample_rate / 2.0,
norm="slaney",
htk=True,
).T
plot_fbank(mel_filters_librosa, "Mel Filter Bank - librosa")
mse = torch.square(mel_filters - mel_filters_librosa).mean().item()
print("Mean Square Difference: ", mse)
![梅尔滤波器组 - librosa](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_006.png)
Mean Square Difference: 3.934872696751886e-17
MelSpectrogram 梅尔频谱图¶
生成梅尔尺度频谱图涉及生成频谱图
以及执行 mel-scale 转换。在 中,提供
此功能。
torchaudio
n_fft = 1024
win_length = None
hop_length = 512
n_mels = 128
mel_spectrogram = T.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode="reflect",
power=2.0,
norm="slaney",
n_mels=n_mels,
mel_scale="htk",
)
melspec = mel_spectrogram(SPEECH_WAVEFORM)
plot_spectrogram(melspec[0], title="MelSpectrogram - torchaudio", ylabel="mel freq")
![MelSpectrogram - torchaudio](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_007.png)
与 librosa 的比较¶
作为参考,以下是生成 mel-scale 的等效方法
具有 的频谱图 。librosa
melspec_librosa = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM.numpy()[0],
sr=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
center=True,
pad_mode="reflect",
power=2.0,
n_mels=n_mels,
norm="slaney",
htk=True,
)
plot_spectrogram(melspec_librosa, title="MelSpectrogram - librosa", ylabel="mel freq")
mse = torch.square(melspec - melspec_librosa).mean().item()
print("Mean Square Difference: ", mse)
![MelSpectrogram - librosa](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_008.png)
Mean Square Difference: 1.2895221557229775e-09
MFCC¶
n_fft = 2048
win_length = None
hop_length = 512
n_mels = 256
n_mfcc = 256
mfcc_transform = T.MFCC(
sample_rate=sample_rate,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
mfcc = mfcc_transform(SPEECH_WAVEFORM)
plot_spectrogram(mfcc[0], title="MFCC")
![MFCC](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_009.png)
与 librosa 的比较¶
melspec = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM.numpy()[0],
sr=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
n_mels=n_mels,
htk=True,
norm=None,
)
mfcc_librosa = librosa.feature.mfcc(
S=librosa.core.spectrum.power_to_db(melspec),
n_mfcc=n_mfcc,
dct_type=2,
norm="ortho",
)
plot_spectrogram(mfcc_librosa, title="MFCC (librosa)")
mse = torch.square(mfcc - mfcc_librosa).mean().item()
print("Mean Square Difference: ", mse)
![MFCC (librosa)](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_010.png)
Mean Square Difference: 0.8104011416435242
LFCC 公司¶
n_fft = 2048
win_length = None
hop_length = 512
n_lfcc = 256
lfcc_transform = T.LFCC(
sample_rate=sample_rate,
n_lfcc=n_lfcc,
speckwargs={
"n_fft": n_fft,
"win_length": win_length,
"hop_length": hop_length,
},
)
lfcc = lfcc_transform(SPEECH_WAVEFORM)
plot_spectrogram(lfcc[0], title="LFCC")
![LFCC 公司](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_011.png)
投¶
pitch = F.detect_pitch_frequency(SPEECH_WAVEFORM, SAMPLE_RATE)
def plot_pitch(waveform, sr, pitch):
figure, axis = plt.subplots(1, 1)
axis.set_title("Pitch Feature")
axis.grid(True)
end_time = waveform.shape[1] / sr
time_axis = torch.linspace(0, end_time, waveform.shape[1])
axis.plot(time_axis, waveform[0], linewidth=1, color="gray", alpha=0.3)
axis2 = axis.twinx()
time_axis = torch.linspace(0, end_time, pitch.shape[1])
axis2.plot(time_axis, pitch[0], linewidth=2, label="Pitch", color="green")
axis2.legend(loc=0)
plot_pitch(SPEECH_WAVEFORM, SAMPLE_RATE, pitch)
![俯仰功能](https://pytorch.org/audio/2.5.0/_images/sphx_glr_audio_feature_extractions_tutorial_012.png)
脚本总运行时间:(0 分 9.807 秒)