注意
单击此处下载完整的示例代码
振荡器和 ADSR 包络¶
作者: Moto Hira
警告
本教程需要原型 DSP 功能,这些功能是 在 nightly 版本中可用。
请参阅 https://pytorch.org/get-started/locally 有关安装 nightly 版本的说明。
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
2.5.0
2.5.0
try:
from torchaudio.prototype.functional import adsr_envelope, oscillator_bank
except ModuleNotFoundError:
print(
"Failed to import prototype DSP features. "
"Please install torchaudio nightly builds. "
"Please refer to https://pytorch.org/get-started/locally "
"for instructions to install a nightly build."
)
raise
import math
import matplotlib.pyplot as plt
from IPython.display import Audio
PI = torch.pi
PI2 = 2 * torch.pi
振荡器库¶
正弦振荡器从给定的 振幅和频率。
其中,相位 \(\theta_t\) 是通过对瞬时 频率 \(f_t\)。
注意
为什么要积分频率?瞬时频率表示速度
在给定时间的振荡。所以对瞬时频率进行积分得到
振荡相位的位移,自 Start 开始。
在离散时间信号处理中,积分成为累积。
在 PyTorch 中,可以使用 .
简单正弦波¶
让我们从简单的案例开始。
首先,我们生成具有恒定频率的正弦波,并且 振幅无处不在,即规则的正弦波。
我们定义了一些常量和辅助函数,用于 本教程的其余部分。
F0 = 344.0 # fundamental frequency
DURATION = 1.1 # [seconds]
SAMPLE_RATE = 16_000 # [Hz]
NUM_FRAMES = int(DURATION * SAMPLE_RATE)
def show(freq, amp, waveform, sample_rate, zoom=None, vol=0.3):
t = (torch.arange(waveform.size(0)) / sample_rate).numpy()
fig, axes = plt.subplots(4, 1, sharex=True)
axes[0].plot(t, freq.numpy())
axes[0].set(title=f"Oscillator bank (bank size: {amp.size(-1)})", ylabel="Frequency [Hz]", ylim=[-0.03, None])
axes[1].plot(t, amp.numpy())
axes[1].set(ylabel="Amplitude", ylim=[-0.03 if torch.all(amp >= 0.0) else None, None])
axes[2].plot(t, waveform.numpy())
axes[2].set(ylabel="Waveform")
axes[3].specgram(waveform, Fs=sample_rate)
axes[3].set(ylabel="Spectrogram", xlabel="Time [s]", xlim=[-0.01, t[-1] + 0.01])
for i in range(4):
axes[i].grid(True)
pos = axes[2].get_position()
plt.tight_layout()
if zoom is not None:
ax = fig.add_axes([pos.x0 + 0.01, pos.y0 + 0.03, pos.width / 2.5, pos.height / 2.0])
ax.plot(t, waveform)
ax.set(xlim=zoom, xticks=[], yticks=[])
waveform /= waveform.abs().max()
return Audio(vol * waveform, rate=sample_rate, normalize=False)
现在我们合成频率和振幅恒定的音频
freq = torch.full((NUM_FRAMES, 1), F0)
amp = torch.ones((NUM_FRAMES, 1))
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
show(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))
组合多个正弦波¶
freq = torch.empty((NUM_FRAMES, 3))
freq[:, 0] = F0
freq[:, 1] = 3 * F0
freq[:, 2] = 5 * F0
amp = torch.ones((NUM_FRAMES, 3)) / 3
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
show(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))
随时间更改频率¶
让我们随时间更改频率。在这里,我们更改了频率 从零到奈奎斯特频率(采样率的一半) log-scale,以便很容易看到波形的变化。
nyquist_freq = SAMPLE_RATE / 2
freq = torch.logspace(0, math.log(0.99 * nyquist_freq, 10), NUM_FRAMES).unsqueeze(-1)
amp = torch.ones((NUM_FRAMES, 1))
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
show(freq, amp, waveform, SAMPLE_RATE, vol=0.2)
我们也可以振荡频率。
fm = 2.5 # rate at which the frequency oscillates
f_dev = 0.9 * F0 # the degree of frequency oscillation
freq = F0 + f_dev * torch.sin(torch.linspace(0, fm * PI2 * DURATION, NUM_FRAMES))
freq = freq.unsqueeze(-1)
amp = torch.ones((NUM_FRAMES, 1))
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
show(freq, amp, waveform, SAMPLE_RATE)
ADSR 包络¶
接下来,我们随时间改变振幅。一种常见的建模技术 amplitude 是 ADSR 包络。
ADSR 代表 Attack、Decay、Sustain 和 Release。
Attack 是从零到顶级所需的时间。
Decay 是从顶部达到 sustain 水平所需的时间。
Sustain 是电平保持不变的电平。
Release 是从 sustain 级别降至零所需的时间。
ADSR 模型有许多变体,此外,一些模型具有 以下属性
按住:攻击后关卡保持在最高等级的时间。
非线性衰减/释放:衰减和释放发生非线性变化。
freq = torch.full((SAMPLE_RATE, 1), F0)
amp = adsr_envelope(
SAMPLE_RATE,
attack=0.2,
hold=0.2,
decay=0.2,
sustain=0.5,
release=0.2,
n_decay=1,
)
amp = amp.unsqueeze(-1)
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
audio = show(freq, amp, waveform, SAMPLE_RATE)
ax = plt.gcf().axes[1]
ax.annotate("Attack", xy=(0.05, 0.7))
ax.annotate("Hold", xy=(0.28, 0.65))
ax.annotate("Decay", xy=(0.45, 0.5))
ax.annotate("Sustain", xy=(0.65, 0.3))
ax.annotate("Release", xy=(0.88, 0.35))
audio
现在让我们看看如何使用 ADSR 包络的一些示例 以创建不同的声音。
以下示例的灵感来自本文。
鼓点¶
unit = NUM_FRAMES // 3
repeat = 9
freq = torch.empty((unit * repeat, 2))
freq[:, 0] = F0 / 9
freq[:, 1] = F0 / 5
amp = torch.stack(
(
adsr_envelope(unit, attack=0.01, hold=0.125, decay=0.12, sustain=0.05, release=0),
adsr_envelope(unit, attack=0.01, hold=0.25, decay=0.08, sustain=0, release=0),
),
dim=-1,
)
amp = amp.repeat(repeat, 1) / 2
bass = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
show(freq, amp, bass, SAMPLE_RATE, vol=0.5)
采摘¶
tones = [
513.74, # do
576.65, # re
647.27, # mi
685.76, # fa
769.74, # so
685.76, # fa
647.27, # mi
576.65, # re
513.74, # do
]
freq = torch.cat([torch.full((unit, 1), tone) for tone in tones], dim=0)
amp = adsr_envelope(unit, attack=0, decay=0.7, sustain=0.28, release=0.29)
amp = amp.repeat(9).unsqueeze(-1)
doremi = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
show(freq, amp, doremi, SAMPLE_RATE)
竖板¶
env = adsr_envelope(NUM_FRAMES * 6, attack=0.98, decay=0.0, sustain=1, release=0.02)
tones = [
484.90, # B4
513.74, # C5
576.65, # D5
1221.88, # D#6/Eb6
3661.50, # A#7/Bb7
6157.89, # G8
]
freq = torch.stack([f * env for f in tones], dim=-1)
amp = env.unsqueeze(-1).expand(freq.shape) / len(tones)
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
show(freq, amp, waveform, SAMPLE_RATE)
引用¶
脚本总运行时间:(0 分 3.041 秒)