目录

音频数据增强

作者Moto Hira

torchaudio提供了多种方法来增强音频数据。

在本教程中,我们将研究一种应用效果、滤镜、 RIR(房间脉冲响应)和编解码器。

最后,我们从干净的语音中合成电话上的嘈杂语音。

import torch
import torchaudio
import torchaudio.functional as F

print(torch.__version__)
print(torchaudio.__version__)

import matplotlib.pyplot as plt
2.4.0
2.4.0

制备

首先,我们导入模块并下载我们在本教程中使用的音频资源。

from IPython.display import Audio

from torchaudio.utils import download_asset

SAMPLE_WAV = download_asset("tutorial-assets/steam-train-whistle-daniel_simon.wav")
SAMPLE_RIR = download_asset("tutorial-assets/Lab41-SRI-VOiCES-rm1-impulse-mc01-stu-clo-8000hz.wav")
SAMPLE_SPEECH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042-8000hz.wav")
SAMPLE_NOISE = download_asset("tutorial-assets/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo-8000hz.wav")
  0%|          | 0.00/427k [00:00<?, ?B/s]
100%|##########| 427k/427k [00:00<00:00, 24.7MB/s]

  0%|          | 0.00/31.3k [00:00<?, ?B/s]
100%|##########| 31.3k/31.3k [00:00<00:00, 33.0MB/s]

  0%|          | 0.00/78.2k [00:00<?, ?B/s]
100%|##########| 78.2k/78.2k [00:00<00:00, 59.5MB/s]

应用效果和筛选

torchaudio.io.AudioEffector允许直接应用 filters 和 codecs 添加到 Tensor 对象,其方式与 command 类似ffmpeg

AudioEffector 用法 <./effector_tutorial.html> 介绍了如何使用 这个类,所以具体可以参考教程。

# Load the data
waveform1, sample_rate = torchaudio.load(SAMPLE_WAV, channels_first=False)

# Define effects
effect = ",".join(
    [
        "lowpass=frequency=300:poles=1",  # apply single-pole lowpass filter
        "atempo=0.8",  # reduce the speed
        "aecho=in_gain=0.8:out_gain=0.9:delays=200:decays=0.3|delays=400:decays=0.3"
        # Applying echo gives some dramatic feeling
    ],
)


# Apply effects
def apply_effect(waveform, sample_rate, effect):
    effector = torchaudio.io.AudioEffector(effect=effect)
    return effector.apply(waveform, sample_rate)


waveform2 = apply_effect(waveform1, sample_rate, effect)

print(waveform1.shape, sample_rate)
print(waveform2.shape, sample_rate)
torch.Size([109368, 2]) 44100
torch.Size([144642, 2]) 44100

请注意,帧数和通道数与 应用效果后的原始值。让我们听听 音频。

def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape
    time_axis = torch.arange(0, num_frames) / sample_rate

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].plot(time_axis, waveform[c], linewidth=1)
        axes[c].grid(True)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
        if xlim:
            axes[c].set_xlim(xlim)
    figure.suptitle(title)
def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
    waveform = waveform.numpy()

    num_channels, _ = waveform.shape

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].specgram(waveform[c], Fs=sample_rate)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
        if xlim:
            axes[c].set_xlim(xlim)
    figure.suptitle(title)

源语言

plot_waveform(waveform1.T, sample_rate, title="Original", xlim=(-0.1, 3.2))
plot_specgram(waveform1.T, sample_rate, title="Original", xlim=(0, 3.04))
Audio(waveform1.T, rate=sample_rate)
  • 源语言
  • 源语言


应用的效果

plot_waveform(waveform2.T, sample_rate, title="Effects Applied", xlim=(-0.1, 3.2))
plot_specgram(waveform2.T, sample_rate, title="Effects Applied", xlim=(0, 3.04))
Audio(waveform2.T, rate=sample_rate)
  • 应用的效果
  • 应用的效果


模拟 Room 混响

卷积 reverb 是一个 技术,用于使干净的音频听起来像以前一样 在不同的环境中生产。

例如,使用房间脉冲响应 (RIR),我们可以制作干净的语音 听起来就像是在会议室里说的一样。

对于此过程,我们需要 RIR 数据。以下数据来自 VOiCES 数据集,但您可以录制自己的数据集 — 只需打开麦克风即可 并拍手。

rir_raw, sample_rate = torchaudio.load(SAMPLE_RIR)
plot_waveform(rir_raw, sample_rate, title="Room Impulse Response (raw)")
plot_specgram(rir_raw, sample_rate, title="Room Impulse Response (raw)")
Audio(rir_raw, rate=sample_rate)
  • Room 脉冲响应 (raw)
  • Room 脉冲响应 (raw)


首先,我们需要清理 RIR。我们提取主要脉冲并归一化 它靠它的力量。

rir = rir_raw[:, int(sample_rate * 1.01) : int(sample_rate * 1.3)]
rir = rir / torch.linalg.vector_norm(rir, ord=2)

plot_waveform(rir, sample_rate, title="Room Impulse Response")
Room 脉冲响应

然后,使用torchaudio.functional.fftconvolve(), 我们将语音信号与 RIR 进行卷积。

speech, _ = torchaudio.load(SAMPLE_SPEECH)
augmented = F.fftconvolve(speech, rir)

源语言

plot_waveform(speech, sample_rate, title="Original")
plot_specgram(speech, sample_rate, title="Original")
Audio(speech, rate=sample_rate)
  • 源语言
  • 源语言


已应用 RIR

plot_waveform(augmented, sample_rate, title="RIR Applied")
plot_specgram(augmented, sample_rate, title="RIR Applied")
Audio(augmented, rate=sample_rate)
  • RIR 已应用
  • RIR 已应用


添加背景噪声

为了给音频数据引入背景噪声,我们可以在 根据某个期望表示音频数据的 Tensor 信噪比 (SNR) [维基百科], 它决定了音频数据相对于噪声的强度 在输出中。

$$ \mathrm{SNR} = \frac{P_{信号}}{P_{噪音}} $$

$$ \mathrm{SNR_{dB}} = 10 \log _{{10}} \mathrm {SNR} $$

为了按照 SNR 向音频数据添加噪声,我们 用torchaudio.functional.add_noise().

speech, _ = torchaudio.load(SAMPLE_SPEECH)
noise, _ = torchaudio.load(SAMPLE_NOISE)
noise = noise[:, : speech.shape[1]]

snr_dbs = torch.tensor([20, 10, 3])
noisy_speeches = F.add_noise(speech, noise, snr_dbs)

背景噪音

plot_waveform(noise, sample_rate, title="Background noise")
plot_specgram(noise, sample_rate, title="Background noise")
Audio(noise, rate=sample_rate)
  • 背景噪音
  • 背景噪音


信噪比 20 dB

snr_db, noisy_speech = snr_dbs[0], noisy_speeches[0:1]
plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
Audio(noisy_speech, rate=sample_rate)
  • 信噪比: 20 [dB]
  • 信噪比: 20 [dB]


信噪比 (SNR) 10 dB

snr_db, noisy_speech = snr_dbs[1], noisy_speeches[1:2]
plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
Audio(noisy_speech, rate=sample_rate)
  • 信噪比: 10 [dB]
  • 信噪比: 10 [dB]


信噪比 3 dB

snr_db, noisy_speech = snr_dbs[2], noisy_speeches[2:3]
plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
Audio(noisy_speech, rate=sample_rate)
  • 信噪比: 3 [dB]
  • 信噪比: 3 [dB]


将编解码器应用于 Tensor 对象

torchaudio.io.AudioEffector还可以将编解码器应用于 一个 Tensor 对象。

waveform, sample_rate = torchaudio.load(SAMPLE_SPEECH, channels_first=False)


def apply_codec(waveform, sample_rate, format, encoder=None):
    encoder = torchaudio.io.AudioEffector(format=format, encoder=encoder)
    return encoder.apply(waveform, sample_rate)

源语言

plot_waveform(waveform.T, sample_rate, title="Original")
plot_specgram(waveform.T, sample_rate, title="Original")
Audio(waveform.T, rate=sample_rate)
  • 源语言
  • 源语言


8 位 mu 定律

mulaw = apply_codec(waveform, sample_rate, "wav", encoder="pcm_mulaw")
plot_waveform(mulaw.T, sample_rate, title="8 bit mu-law")
plot_specgram(mulaw.T, sample_rate, title="8 bit mu-law")
Audio(mulaw.T, rate=sample_rate)
  • 8 位 mu 定律
  • 8 位 mu 定律


G.722

g722 = apply_codec(waveform, sample_rate, "g722")
plot_waveform(g722.T, sample_rate, title="G.722")
plot_specgram(g722.T, sample_rate, title="G.722")
Audio(g722.T, rate=sample_rate)
  • G.722
  • G.722


沃比斯

vorbis = apply_codec(waveform, sample_rate, "ogg", encoder="vorbis")
plot_waveform(vorbis.T, sample_rate, title="Vorbis")
plot_specgram(vorbis.T, sample_rate, title="Vorbis")
Audio(vorbis.T, rate=sample_rate)
  • 沃比斯
  • 沃比斯


模拟电话重新编码

结合前面的技术,我们可以模拟听起来 就像一个人在一个回声房间里通过电话交谈,人们在交谈 在后台。

sample_rate = 16000
original_speech, sample_rate = torchaudio.load(SAMPLE_SPEECH)

plot_specgram(original_speech, sample_rate, title="Original")

# Apply RIR
rir_applied = F.fftconvolve(speech, rir)

plot_specgram(rir_applied, sample_rate, title="RIR Applied")

# Add background noise
# Because the noise is recorded in the actual environment, we consider that
# the noise contains the acoustic feature of the environment. Therefore, we add
# the noise after RIR application.
noise, _ = torchaudio.load(SAMPLE_NOISE)
noise = noise[:, : rir_applied.shape[1]]

snr_db = torch.tensor([8])
bg_added = F.add_noise(rir_applied, noise, snr_db)

plot_specgram(bg_added, sample_rate, title="BG noise added")

# Apply filtering and change sample rate
effect = ",".join(
    [
        "lowpass=frequency=4000:poles=1",
        "compand=attacks=0.02:decays=0.05:points=-60/-60|-30/-10|-20/-8|-5/-8|-2/-8:gain=-8:volume=-7:delay=0.05",
    ]
)

filtered = apply_effect(bg_added.T, sample_rate, effect)
sample_rate2 = 8000

plot_specgram(filtered.T, sample_rate2, title="Filtered")

# Apply telephony codec
codec_applied = apply_codec(filtered, sample_rate2, "g722")
plot_specgram(codec_applied.T, sample_rate2, title="G.722 Codec Applied")
  • 源语言
  • RIR 已应用
  • 添加的 BG 噪声
  • 过滤
  • 已应用 G.722 编解码器

原始演讲

Audio(original_speech, rate=sample_rate)


已应用 RIR

Audio(rir_applied, rate=sample_rate)


添加了背景噪音

Audio(bg_added, rate=sample_rate)


过滤

Audio(filtered.T, rate=sample_rate2)


已应用编解码器

Audio(codec_applied.T, rate=sample_rate2)


脚本总运行时间:(0 分 14.904 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源

APP信息