注意
转到最后下载完整的示例代码
使用 ExecuTorch 开发人员工具对模型进行性能分析¶
作者: Jack Khuu
ExecuTorch 开发者工具是一组工具,旨在 为用户提供了对 ExecuTorch 进行性能分析、调试和可视化的能力 模型。
本教程将展示如何利用 Developer Tools 对模型进行性能分析的完整端到端流程。 具体来说,它将:
先决条件¶
要运行本教程,您首先需要设置 ExecuTorch 环境。
生成 ETRecord(可选)¶
第一步是生成一个 . 包含模型
用于将运行时结果(例如性能分析)链接到
热切的模型。这是通过 生成的。ETRecord
ETRecord
executorch.devtools.generate_etrecord
executorch.devtools.generate_etrecord
接收输出文件路径 (STR),则
edge dialect 模型 (),ExecuTorch dialect 模型
() 和其他模型的可选字典。EdgeProgramManager
ExecutorchProgramManager
在本教程中,使用一个示例模型(如下所示)进行演示。
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from executorch.devtools import generate_etrecord
from executorch.exir import (
EdgeCompileConfig,
EdgeProgramManager,
ExecutorchProgramManager,
to_edge,
)
from torch.export import export, ExportedProgram
# Generate Model
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square, you can specify with a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
aten_model: ExportedProgram = export(model, (torch.randn(1, 1, 32, 32),), strict=True)
edge_program_manager: EdgeProgramManager = to_edge(
aten_model, compile_config=EdgeCompileConfig(_check_ir_validity=True)
)
edge_program_manager_copy = copy.deepcopy(edge_program_manager)
et_program_manager: ExecutorchProgramManager = edge_program_manager.to_executorch()
# Generate ETRecord
etrecord_path = "etrecord.bin"
generate_etrecord(etrecord_path, edge_program_manager_copy, et_program_manager)
警告
用户应该对 的输出进行深层复制,并传入
deepcopy 复制到 API。这是必需的,因为
后续调用 , 执行就地更改,并将
在此过程中丢失调试数据。to_edge()
generate_etrecord
to_executorch()
生成 ETDump¶
下一步是生成一个 . 包含运行时结果
从执行捆绑程序模型。ETDump
ETDump
在本教程中,将从上面的示例模型创建一个 Bundled Program。
import torch
from executorch.devtools import BundledProgram
from executorch.devtools.bundled_program.config import MethodTestCase, MethodTestSuite
from executorch.devtools.bundled_program.serialize import (
serialize_from_bundled_program_to_flatbuffer,
)
from executorch.exir import to_edge
from torch.export import export
# Step 1: ExecuTorch Program Export
m_name = "forward"
method_graphs = {m_name: export(model, (torch.randn(1, 1, 32, 32),), strict=True)}
# Step 2: Construct Method Test Suites
inputs = [[torch.randn(1, 1, 32, 32)] for _ in range(2)]
method_test_suites = [
MethodTestSuite(
method_name=m_name,
test_cases=[
MethodTestCase(inputs=inp, expected_outputs=getattr(model, m_name)(*inp))
for inp in inputs
],
)
]
# Step 3: Generate BundledProgram
executorch_program = to_edge(method_graphs).to_executorch()
bundled_program = BundledProgram(executorch_program, method_test_suites)
# Step 4: Serialize BundledProgram to flatbuffer.
serialized_bundled_program = serialize_from_bundled_program_to_flatbuffer(
bundled_program
)
save_path = "bundled_program.bp"
with open(save_path, "wb") as f:
f.write(serialized_bundled_program)
使用 CMake(按照这些说明设置 cmake)执行捆绑程序以生成:ETDump
cd executorch
./examples/devtools/build_example_runner.sh
cmake-out/examples/devtools/example_runner --bundled_program_path="bundled_program.bp"
创建 Inspector¶
最后一步是通过传入工件路径来创建 。
Inspector 从中获取运行时结果并将其关联到
Edge Dialect Graph 的运算符。Inspector
ETDump
召回:不需要 AN。如果未提供 an,则
Inspector 将显示运行时结果,而不显示运算符关联。ETRecord
ETRecord
要可视化所有运行时事件,请调用 Inspector 的 .print_data_tabular
from executorch.devtools import Inspector
etrecord_path = "etrecord.bin"
etdump_path = "etdump.etdp"
inspector = Inspector(etdump_path=etdump_path, etrecord=etrecord_path)
inspector.print_data_tabular()
False
使用 Inspector 进行分析¶
Inspector
提供 2 种访问摄取信息的方法:EventBlocks 和 .这些媒介使用户能够执行自定义
有关其模型性能的分析。DataFrames
以下是 和 方法的用法示例。EventBlock
DataFrame
# Set Up
import pprint as pp
import pandas as pd
pd.set_option("display.max_colwidth", None)
pd.set_option("display.max_columns", None)
如果用户想要原始性能分析结果,他们将执行类似于
查找事件的原始运行时数据。addmm.out
for event_block in inspector.event_blocks:
# Via EventBlocks
for event in event_block.events:
if event.name == "native_call_addmm.out":
print(event.name, event.perf_data.raw if event.perf_data else "")
# Via Dataframe
df = event_block.to_dataframe()
df = df[df.event_name == "native_call_addmm.out"]
print(df[["event_name", "raw"]])
print()
如果用户想要将 Operator 追溯到他们的模型代码,他们会这样做
类似于查找
最慢的呼叫。convolution.out
for event_block in inspector.event_blocks:
# Via EventBlocks
slowest = None
for event in event_block.events:
if event.name == "native_call_convolution.out":
if slowest is None or event.perf_data.p50 > slowest.perf_data.p50:
slowest = event
if slowest is not None:
print(slowest.name)
print()
pp.pprint(slowest.stack_traces)
print()
pp.pprint(slowest.module_hierarchy)
# Via Dataframe
df = event_block.to_dataframe()
df = df[df.event_name == "native_call_convolution.out"]
if len(df) > 0:
slowest = df.loc[df["p50"].idxmax()]
assert slowest
print(slowest.name)
print()
pp.pprint(slowest.stack_traces if slowest.stack_traces else "")
print()
pp.pprint(slowest.module_hierarchy if slowest.module_hierarchy else "")
如果用户想要模块的总运行时间,他们可以使用 .find_total_for_module
print(inspector.find_total_for_module("L__self__"))
print(inspector.find_total_for_module("L__self___conv2"))
0.0
0.0
注意:是 Inspector 的特殊一等方法find_total_for_module
结论¶
在本教程中,我们了解了使用 ExecuTorch 所需的步骤 模型。它还演示了如何使用 Inspector API 以分析模型运行结果。