MPS 后端¶
mps
设备实现高性能
使用 Metal 编程框架对 MacOS 设备进行 GPU 培训。它
推出一种新设备来映射机器学习计算图和
高效的 Metal Performance Shaders Graph 框架上的基元和
分别由 Metal Performance Shaders 框架提供的 tuned 内核。
新的 MPS 后端扩展了 PyTorch 生态系统并提供现有脚本 在 GPU 上设置和运行操作的功能。
要开始使用,只需将 Tensor 和 Module 移动到设备即可:mps
# Check that MPS is available
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
else:
mps_device = torch.device("mps")
# Create a Tensor directly on the mps device
x = torch.ones(5, device=mps_device)
# Or
x = torch.ones(5, device="mps")
# Any operation happens on the GPU
y = x * 2
# Move your model to mps just like any other device
model = YourFavoriteNet()
model.to(mps_device)
# Now every call runs on the GPU
pred = model(x)