Intel GPU 入门¶
硬件先决条件¶
经过验证的硬件 |
支持的操作系统 |
---|---|
Intel® Data Center GPU Max 系列 |
Linux的 |
Intel 客户端 GPU |
Windows/Linux 操作系统 |
英特尔 GPU 支持(测试版)已在 PyTorch* 2.5 中为英特尔®数据中心 GPU Max 系列和英特尔®客户端 GPU 在 Linux 和 Windows 上做好准备,它将英特尔 GPU 和 SYCL* 软件堆栈引入官方 PyTorch 堆栈,提供一致的用户体验,以拥抱更多的人工智能应用场景。
安装¶
二进制文件¶
平台 Linux¶
现在我们已经安装了所有必需的软件包并激活了环境。使用以下命令在 Linux 上安装 、 、 。pytorch
torchvision
torchaudio
对于预览色盘
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/test/xpu
用于夜间车轮
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu
平台窗口¶
现在我们已经安装了所有必需的软件包并激活了环境。使用以下命令在 Windows 上安装,从 和 的源代码构建。pytorch
torchvision
torchaudio
对于预览色盘
pip3 install torch --index-url https://download.pytorch.org/whl/test/xpu
用于夜间车轮
pip3 install --pre torch --index-url https://download.pytorch.org/whl/nightly/xpu
从源¶
从源码构建 参考 PyTorch 安装 从源码构建。torch
从源构建 参考 Torchvision 安装 从源构建。torchvision
从源构建,参考 Torchaudio 安装 从源构建。torchaudio
检查是否有空房 Intel GPU¶
要检查您的 Intel GPU 是否可用,您通常会使用以下代码:
import torch
torch.xpu.is_available() # torch.xpu is the API for Intel GPU support
如果输出为 ,请仔细检查以下步骤。False
Intel GPU 驱动程序安装
Intel 支持软件包安装
环境设置
最小代码更改¶
如果要将代码从 迁移,请将引用从 更改为 。例如:cuda
cuda
xpu
# CUDA CODE
tensor = torch.tensor([1.0, 2.0]).to("cuda")
# CODE for Intel GPU
tensor = torch.tensor([1.0, 2.0]).to("xpu")
以下几点概述了对带有 Intel GPU 的 PyTorch 的支持和限制:
支持训练和推理工作流。
eager 模式和 均受支持。
torch.compile
支持 FP32、BF16、FP16 和自动混合精度 (AMP) 等数据类型。
例子¶
本节包含推理和训练工作流的使用示例。
推理示例¶
以下是一些推理工作流示例。
使用 FP32 进行推理¶
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
model(data)
print("Execution finished")
使用 AMP 进行推理¶
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
d = torch.rand(1, 3, 224, 224)
d = d.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=True):
model(data)
print("Execution finished")
使用torch.compile
¶
import torch
import torchvision.models as models
import time
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
ITERS = 10
model = model.to("xpu")
data = data.to("xpu")
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time before torch.compile for iteration {i}: {(end-start)*1000} ms")
model = torch.compile(model)
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time after torch.compile for iteration {i}: {(end-start)*1000} ms")
print("Execution finished")
培训示例¶
以下是一些训练工作流示例。
使用 FP32 进行训练¶
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
使用 AMP 进行训练¶
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
use_amp=True
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
scaler = torch.amp.GradScaler(enabled=use_amp)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=use_amp):
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
训练torch.compile
¶
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
model = torch.compile(model)
print(f"Initiating training with torch compile")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")