捆绑程序 – ExecuTorch 模型验证工具¶
介绍¶
BundledProgram
是核心 ExecuTorch 程序的包装器,旨在帮助用户使用他们部署的模型包装测试用例。 不一定是程序的核心部分,也不是程序执行所必需的,但对于各种其他用例(例如模型正确性评估,包括模型启动过程中的 E2E 测试)尤为重要。BundledProgram
总体而言,该程序可以分为两个阶段,在每个阶段我们都支持:
Emit 阶段:将测试 I/O 案例与 ExecuTorch 程序捆绑在一起,序列化到 flatbuffer 中。
运行时阶段:在运行时访问、执行和验证捆绑的测试用例。
Emit 阶段¶
此阶段主要侧重于创建 a 并将其作为 flatbuffer 文件转储到磁盘上。主要步骤如下:BundledProgram
创建一个模型并发出其 ExecuTorch 程序。
构造 a 来记录所有需要捆绑的测试用例。
List[MethodTestSuite]
使用发出的模型 和 生成。
BundledProgram
List[MethodTestSuite]
序列化 并将其转储到磁盘。
BundledProgram
步骤 1:创建一个模型并发出其 ExecuTorch 程序。¶
ExecuTorch 程序可以通过 ExecuTorch API 从用户的模型发出。按照生成示例 ExecuTorch 程序或导出到 ExecuTorch 教程进行操作。
第 2 步:构造以保存测试信息List[MethodTestSuite]
¶
在 中,我们创建了两个新类 和 ,用于保存 ExecuTorch 程序验证的基本信息。BundledProgram
MethodTestCase
MethodTestSuite
MethodTestCase
表示单个测试用例。每个都包含单次执行的输入和预期输出。MethodTestCase
MethodTestCase
- executorch.devtools.bundled_program.config.MethodTestCase 中。__init__(self, inputs, expected_outputs=无)
用于验证特定方法的单个测试用例
- 参数
输入 –
eager_model 使用特定的推理方法进行一次性执行所需的所有输入。
值得一提的是,虽然捆绑的程序和 ET 运行时 api 都支持设置输入 除了 torch.tensor 类型之外,只有 torch.tensor 类型的输入才会在 方法和其他输入将只进行健全性检查,如果它们与 method 中的默认值匹配。
expected_outputs – 用于验证的给定输入的预期输出。如果用户只想使用测试用例进行性能分析,则可以为 None。
- 返回
自我
MethodTestSuite
包含单个方法的所有测试信息,包括表示方法名称的 str 和所有测试用例的 STR:List[MethodTestCase]
MethodTestSuite
- executorch.devtools.bundled_program.config 中。MethodTestSuite(method_name, test_cases)[来源]
与 verify method 相关的所有测试信息
- executorch.devtools.bundled_program.config 中。method_name
需要验证的方法名称。
- executorch.devtools.bundled_program.config 中。test_cases
用于验证方法的所有测试用例。
由于每个模型可能有多种推理方法,因此我们需要生成来保存所有基本信息。List[MethodTestSuite]
第 3 步:生成BundledProgram
¶
我们提供 class under 来捆绑 -like 变量,包括 、 或 、 和 :BundledProgram
executorch/devtools/bundled_program/core.py
ExecutorchProgram
ExecutorchProgram
MultiMethodExecutorchProgram
ExecutorchProgramManager
List[MethodTestSuite]
BundledProgram
- executorch.devtools.bundled_program.core.BundledProgram 中。__init__(self, executorch_program, method_test_suites)
通过将给定的程序和method_test_suites捆绑在一起来创建 BundledProgram。
- 参数
executorch_program – 要捆绑的程序。
method_test_suites – 要捆绑的某些方法的测试用例。
的 Construtor 将在内部进行 sannity 检查,以查看给定的 Program 是否符合给定的 Program 的要求。具体说来:BundledProgram
List[MethodTestSuite]
每个 in for 的 method_names 也应为 in 程序。请注意,无需为 Program 中的每个方法设置测试用例。
MethodTestSuite
List[MethodTestSuite]
每个测试用例的元数据应满足相应推理方法输入的要求。
第 4 步:序列化为 Flatbuffer。BundledProgram
¶
为了序列化以使运行时 API 使用它,我们提供了两个 API,它们都位于 .BundledProgram
executorch/devtools/bundled_program/serialize/__init__.py
序列化和反序列化
- executorch.devtools.bundled_program.serialize 中。serialize_from_bundled_program_to_flatbuffer(bundled_program)[来源]
将 BundledProgram 序列化为 FlatBuffer 二进制格式。
- 参数
bundled_program (BundledProgram) – 要序列化的 BundledProgram 变量。
- 返回
序列化的 FlatBuffer 二进制数据(以字节为单位)。
发出示例¶
这是一个流程,重点介绍了如何生成给定的 PyTorch 模型以及我们要测试该模型的代表性输入。BundledProgram
import torch
from executorch.exir import to_edge
from executorch.devtools import BundledProgram
from executorch.devtools.bundled_program.config import MethodTestCase, MethodTestSuite
from executorch.devtools.bundled_program.serialize import (
serialize_from_bundled_program_to_flatbuffer,
)
from torch.export import export, export_for_training
# Step 1: ExecuTorch Program Export
class SampleModel(torch.nn.Module):
"""An example model with multi-methods. Each method has multiple input and single output"""
def __init__(self) -> None:
super().__init__()
self.a: torch.Tensor = 3 * torch.ones(2, 2, dtype=torch.int32)
self.b: torch.Tensor = 2 * torch.ones(2, 2, dtype=torch.int32)
def forward(self, x: torch.Tensor, q: torch.Tensor) -> torch.Tensor:
z = x.clone()
torch.mul(self.a, x, out=z)
y = x.clone()
torch.add(z, self.b, out=y)
torch.add(y, q, out=y)
return y
# Inference method name of SampleModel we want to bundle testcases to.
# Notices that we do not need to bundle testcases for every inference methods.
method_name = "forward"
model = SampleModel()
# Inputs for graph capture.
capture_input = (
(torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
(torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
)
# Export method's FX Graph.
method_graph = export(
export_for_training(model, capture_input).module(),
capture_input,
)
# Emit the traced method into ET Program.
et_program = to_edge(method_graph).to_executorch()
# Step 2: Construct MethodTestSuite for Each Method
# Prepare the Test Inputs.
# Number of input sets to be verified
n_input = 10
# Input sets to be verified.
inputs = [
# Each list below is a individual input set.
# The number of inputs, dtype and size of each input follow Program's spec.
[
(torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
(torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
]
for _ in range(n_input)
]
# Generate Test Suites
method_test_suites = [
MethodTestSuite(
method_name=method_name,
test_cases=[
MethodTestCase(
inputs=input,
expected_outputs=(getattr(model, method_name)(*input), ),
)
for input in inputs
],
),
]
# Step 3: Generate BundledProgram
bundled_program = BundledProgram(et_program, method_test_suites)
# Step 4: Serialize BundledProgram to flatbuffer.
serialized_bundled_program = serialize_from_bundled_program_to_flatbuffer(
bundled_program
)
save_path = "bundled_program.bpte"
with open(save_path, "wb") as f:
f.write(serialized_bundled_program)
如果需要,我们还可以从 flatbuffer 文件重新生成:BundledProgram
from executorch.devtools.bundled_program.serialize import deserialize_from_flatbuffer_to_bundled_program
save_path = "bundled_program.bpte"
with open(save_path, "rb") as f:
serialized_bundled_program = f.read()
regenerate_bundled_program = deserialize_from_flatbuffer_to_bundled_program(serialized_bundled_program)
运行时阶段¶
此阶段主要侧重于执行具有捆绑输入的模型,并将模型的输出与捆绑的预期输出进行比较。我们提供了多个 API 来处理它的关键部分。
从缓冲区获取 ExecuTorch 程序指针BundledProgram
¶
我们需要指向 ExecuTorch 程序的指针来执行。为了统一加载和执行过程以及 Program flatbuffer,我们创建了一个 API:BundledProgram
get_program_data
警告
doxygenfunction:在项目“ExecuTorch”的 doxygen xml 输出中找不到函数“::executorch::bundled_program::get_program_data”,来自目录:../build/xml/ 中
以下是如何使用 API 的示例:get_program_data
// Assume that the user has read the contents of the file into file_data using
// whatever method works best for their application. The file could contain
// either BundledProgram data or Program data.
void* file_data = ...;
size_t file_data_len = ...;
// If file_data contains a BundledProgram, get_program_data() will return a
// pointer to the Program data embedded inside it. Otherwise it will return
// file_data, which already pointed to Program data.
const void* program_ptr;
size_t program_len;
status = executorch::bundled_program::get_program_data(
file_data, file_data_len, &program_ptr, &program_len);
ET_CHECK_MSG(
status == Error::Ok,
"get_program_data() failed with status 0x%" PRIx32,
status);
将捆绑的输入加载到方法¶
要在捆绑的 input 上执行程序,我们需要将捆绑的 input 加载到方法中。这里我们提供了一个名为 :executorch::bundled_program::load_bundled_input
load_bundled_input
警告
doxygenfunction:load_bundled_input bundled_program在目录 ../build/xml/ 中
验证方法的输出。¶
我们调用以验证方法的输出与捆绑的预期输出。以下是此 API 的详细信息:executorch::bundled_program::verify_method_outputs
verify_method_outputs
警告
doxygenfunction:verify_method_outputs bundled_program在目录 ../build/xml/ 中
运行时示例¶
这里我们提供了一个有关如何逐步运行捆绑程序的示例。大部分代码是从 executor_runner 借来的,如果您需要更多信息和上下文,请查看该文件:
// method_name is the name for the method we want to test
// memory_manager is the executor::MemoryManager variable for executor memory allocation.
// program is the ExecuTorch program.
Result<Method> method = program->load_method(method_name, &memory_manager);
ET_CHECK_MSG(
method.ok(),
"load_method() failed with status 0x%" PRIx32,
method.error());
// Load testset_idx-th input in the buffer to plan
status = executorch::bundled_program::load_bundled_input(
*method,
program_data.bundled_program_data(),
FLAGS_testset_idx);
ET_CHECK_MSG(
status == Error::Ok,
"load_bundled_input failed with status 0x%" PRIx32,
status);
// Execute the plan
status = method->execute();
ET_CHECK_MSG(
status == Error::Ok,
"method->execute() failed with status 0x%" PRIx32,
status);
// Verify the result.
status = executorch::bundled_program::verify_method_outputs(
*method,
program_data.bundled_program_data(),
FLAGS_testset_idx,
FLAGS_rtol,
FLAGS_atol);
ET_CHECK_MSG(
status == Error::Ok,
"Bundle verification failed with status 0x%" PRIx32,
status);
常见错误¶
如果与 .以下是两种常见情况:List[MethodTestSuites]
Program
测试输入与模型的要求不匹配。¶
PyTorch 模型的每种推理方法对输入都有自己的要求,例如输入的数量、每个输入的 dtype 等。 如果测试输入不满足要求,将引发错误。BundledProgram
以下是测试输入的 dtype 不满足模型要求的示例:
import torch
from executorch.exir import to_edge
from executorch.devtools import BundledProgram
from executorch.devtools.bundled_program.config import MethodTestCase, MethodTestSuite
from torch.export import export, export_for_training
class Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = 3 * torch.ones(2, 2, dtype=torch.float)
self.b = 2 * torch.ones(2, 2, dtype=torch.float)
def forward(self, x):
out_1 = torch.ones(2, 2, dtype=torch.float)
out_2 = torch.ones(2, 2, dtype=torch.float)
torch.mul(self.a, x, out=out_1)
torch.add(out_1, self.b, out=out_2)
return out_2
model = Module()
method_names = ["forward"]
inputs = (torch.ones(2, 2, dtype=torch.float), )
# Find each method of model needs to be traced my its name, export its FX Graph.
method_graph = export(
export_for_training(model, inputs).module(),
inputs,
)
# Emit the traced methods into ET Program.
et_program = to_edge(method_graph).to_executorch()
# number of input sets to be verified
n_input = 10
# Input sets to be verified for each inference methods.
# To simplify, here we create same inputs for all methods.
inputs = {
# Inference method name corresponding to its test cases.
m_name: [
# NOTE: executorch program needs torch.float, but here is torch.int
[
torch.randint(-5, 5, (2, 2), dtype=torch.int),
]
for _ in range(n_input)
]
for m_name in method_names
}
# Generate Test Suites
method_test_suites = [
MethodTestSuite(
method_name=m_name,
test_cases=[
MethodTestCase(
inputs=input,
expected_outputs=(getattr(model, m_name)(*input),),
)
for input in inputs[m_name]
],
)
for m_name in method_names
]
# Generate BundledProgram
bundled_program = BundledProgram(et_program, method_test_suites)
引发的错误
The input tensor tensor([[-2, 0],
[-2, -1]], dtype=torch.int32) dtype shall be torch.float32, but now is torch.int32
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[1], line 72
56 method_test_suites = [
57 MethodTestSuite(
58 method_name=m_name,
(...)
67 for m_name in method_names
68 ]
70 # Step 3: Generate BundledProgram
---> 72 bundled_program = create_bundled_program(program, method_test_suites)
File /executorch/devtools/bundled_program/core.py:276, in create_bundled_program(program, method_test_suites)
264 """Create bp_schema.BundledProgram by bundling the given program and method_test_suites together.
265
266 Args:
(...)
271 The `BundledProgram` variable contains given ExecuTorch program and test cases.
272 """
274 method_test_suites = sorted(method_test_suites, key=lambda x: x.method_name)
--> 276 assert_valid_bundle(program, method_test_suites)
278 bundled_method_test_suites: List[bp_schema.BundledMethodTestSuite] = []
280 # Emit data and metadata of bundled tensor
File /executorch/devtools/bundled_program/core.py:219, in assert_valid_bundle(program, method_test_suites)
215 # type of tensor input should match execution plan
216 if type(cur_plan_test_inputs[j]) == torch.Tensor:
217 # pyre-fixme[16]: Undefined attribute [16]: Item `bool` of `typing.Union[bool, float, int, torch._tensor.Tensor]`
218 # has no attribute `dtype`.
--> 219 assert cur_plan_test_inputs[j].dtype == get_input_dtype(
220 program, program_plan_id, j
221 ), "The input tensor {} dtype shall be {}, but now is {}".format(
222 cur_plan_test_inputs[j],
223 get_input_dtype(program, program_plan_id, j),
224 cur_plan_test_inputs[j].dtype,
225 )
226 elif type(cur_plan_test_inputs[j]) in (
227 int,
228 bool,
229 float,
230 ):
231 assert type(cur_plan_test_inputs[j]) == get_input_type(
232 program, program_plan_id, j
233 ), "The input primitive dtype shall be {}, but now is {}".format(
234 get_input_type(program, program_plan_id, j),
235 type(cur_plan_test_inputs[j]),
236 )
AssertionError: The input tensor tensor([[-2, 0],
[-2, -1]], dtype=torch.int32) dtype shall be torch.float32, but now is torch.int32
中的方法名称 不存在。BundleConfig
¶
另一个常见错误是 any 中的方法名称在 Model 中不存在。 将引发错误并显示不存在的方法名称:MethodTestSuite
BundledProgram
import torch
from executorch.exir import to_edge
from executorch.devtools import BundledProgram
from executorch.devtools.bundled_program.config import MethodTestCase, MethodTestSuite
from torch.export import export, export_for_training
class Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = 3 * torch.ones(2, 2, dtype=torch.float)
self.b = 2 * torch.ones(2, 2, dtype=torch.float)
def forward(self, x):
out_1 = torch.ones(2, 2, dtype=torch.float)
out_2 = torch.ones(2, 2, dtype=torch.float)
torch.mul(self.a, x, out=out_1)
torch.add(out_1, self.b, out=out_2)
return out_2
model = Module()
method_names = ["forward"]
inputs = (torch.ones(2, 2, dtype=torch.float),)
# Find each method of model needs to be traced my its name, export its FX Graph.
method_graph = export(
export_for_training(model, inputs).module(),
inputs,
)
# Emit the traced methods into ET Program.
et_program = to_edge(method_graph).to_executorch()
# number of input sets to be verified
n_input = 10
# Input sets to be verified for each inference methods.
# To simplify, here we create same inputs for all methods.
inputs = {
# Inference method name corresponding to its test cases.
m_name: [
[
torch.randint(-5, 5, (2, 2), dtype=torch.float),
]
for _ in range(n_input)
]
for m_name in method_names
}
# Generate Test Suites
method_test_suites = [
MethodTestSuite(
method_name=m_name,
test_cases=[
MethodTestCase(
inputs=input,
expected_outputs=(getattr(model, m_name)(*input),),
)
for input in inputs[m_name]
],
)
for m_name in method_names
]
# NOTE: MISSING_METHOD_NAME is not an inference method in the above model.
method_test_suites[0].method_name = "MISSING_METHOD_NAME"
# Generate BundledProgram
bundled_program = BundledProgram(et_program, method_test_suites)
引发的错误
All method names in bundled config should be found in program.execution_plan, but {'MISSING_METHOD_NAME'} does not include.
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[3], line 73
70 method_test_suites[0].method_name = "MISSING_METHOD_NAME"
72 # Generate BundledProgram
---> 73 bundled_program = create_bundled_program(program, method_test_suites)
File /executorch/devtools/bundled_program/core.py:276, in create_bundled_program(program, method_test_suites)
264 """Create bp_schema.BundledProgram by bundling the given program and method_test_suites together.
265
266 Args:
(...)
271 The `BundledProgram` variable contains given ExecuTorch program and test cases.
272 """
274 method_test_suites = sorted(method_test_suites, key=lambda x: x.method_name)
--> 276 assert_valid_bundle(program, method_test_suites)
278 bundled_method_test_suites: List[bp_schema.BundledMethodTestSuite] = []
280 # Emit data and metadata of bundled tensor
File /executorch/devtools/bundled_program/core.py:141, in assert_valid_bundle(program, method_test_suites)
138 method_name_of_program = {e.name for e in program.execution_plan}
139 method_name_of_test_suites = {t.method_name for t in method_test_suites}
--> 141 assert method_name_of_test_suites.issubset(
142 method_name_of_program
143 ), f"All method names in bundled config should be found in program.execution_plan, \
144 but {str(method_name_of_test_suites - method_name_of_program)} does not include."
146 # check if method_tesdt_suites has been sorted in ascending alphabetical order of method name.
147 for test_suite_id in range(1, len(method_test_suites)):
AssertionError: All method names in bundled config should be found in program.execution_plan, but {'MISSING_METHOD_NAME'} does not include.