注意
单击此处下载完整的示例代码
使用 Tacotron2 的文本转语音¶
概述¶
本教程介绍如何使用 在 torchaudio 中预训练 Tacotron2。
文本转语音管道如下所示:
文本预处理
首先,将输入文本编码为元件列表。在这个 教程中,我们将使用英文字符和音素作为符号。
频谱图生成
从编码的文本中,生成频谱图。为此,我们使用 model。
Tacotron2
时域转换
最后一步是将频谱图转换为波形。这 从频谱图生成语音的过程也称为 Vocoder。 在本教程中,使用了三种不同的声码器,WaveRNN、Griffin-Lim、 和 Nvidia 的 WaveGlow。
整个过程如下图所示。
![https://download.pytorch.org/torchaudio/tutorial-assets/tacotron2_tts_pipeline.png](https://download.pytorch.org/torchaudio/tutorial-assets/tacotron2_tts_pipeline.png)
制备¶
首先,我们安装必要的依赖项。除了 之外,还需要执行基于音素的
编码。torchaudio
DeepPhonemizer
# When running this example in notebook, install DeepPhonemizer
# !pip3 install deep_phonemizer
import torch
import torchaudio
import matplotlib
import matplotlib.pyplot as plt
import IPython
matplotlib.rcParams['figure.figsize'] = [16.0, 4.8]
torch.random.manual_seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(torch.__version__)
print(torchaudio.__version__)
print(device)
外:
1.10.0+cpu
0.10.0+cpu
cpu
文本处理¶
基于字符的编码¶
在本节中,我们将介绍如何使用基于字符的编码 工程。
由于预训练的 Tacotron2 模型需要一组特定的符号
表中,其功能与 中提供的功能相同。这
部分更多地用于解释编码的基础。torchaudio
首先,我们定义品种集。例如,我们可以使用 .然后,我们将映射
输入文本的每个字符都放入相应的
符号。'_-!\'(),.:;? abcdefghijklmnopqrstuvwxyz'
以下是此类处理的示例。在示例中,symbol 不在表中的 API 的 URL 将被忽略。
外:
[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15, 2, 11, 31, 16, 35, 31, 11, 31, 26, 11, 30, 27, 16, 16, 14, 19, 2]
如上所述,symbol table 和 indices 必须匹配
预训练的 Tacotron2 模型期望什么。 提供
transform 与预训练模型一起。例如,您可以
instantiate 并使用 type 的 Transform,如下所示。torchaudio
外:
tensor([[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15, 2, 11, 31, 16, 35, 31, 11,
31, 26, 11, 30, 27, 16, 16, 14, 19, 2]])
tensor([28], dtype=torch.int32)
该对象将文本或文本列表作为输入。
当提供文本列表时,返回的变量
表示输出中每个已处理令牌的有效长度
批。processor
lengths
可以按如下方式检索中间表示。
外:
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', ' ', 't', 'e', 'x', 't', ' ', 't', 'o', ' ', 's', 'p', 'e', 'e', 'c', 'h', '!']
基于音素的编码¶
基于音素的编码类似于基于字符的编码,但它 使用基于音素的符号表和 G2P (字素到音素) 型。
G2P 模型的细节不在本教程的讨论范围之内,我们将 看看转换是什么样子的就知道了。
与基于字符的编码类似,编码过程是
预期与预先训练的 Tacotron2 模型的训练对象相匹配。 具有用于创建流程的接口。torchaudio
下面的代码说明了如何创建和使用该过程。后
场景中,使用 package 创建 G2P 模型,并且
作者发布的预训练权重 is
获取。DeepPhonemizer
DeepPhonemizer
外:
0%| | 0.00/63.6M [00:00<?, ?B/s]
0%| | 48.0k/63.6M [00:00<04:03, 274kB/s]
0%| | 248k/63.6M [00:00<01:24, 782kB/s]
2%|1 | 1.02M/63.6M [00:00<00:26, 2.50MB/s]
6%|5 | 3.58M/63.6M [00:00<00:08, 7.39MB/s]
10%|# | 6.53M/63.6M [00:00<00:04, 12.0MB/s]
13%|#2 | 8.12M/63.6M [00:00<00:04, 12.1MB/s]
17%|#7 | 10.9M/63.6M [00:01<00:03, 15.0MB/s]
20%|#9 | 12.7M/63.6M [00:01<00:03, 14.5MB/s]
24%|##4 | 15.4M/63.6M [00:01<00:03, 16.5MB/s]
27%|##6 | 17.1M/63.6M [00:01<00:03, 15.6MB/s]
31%|###1 | 19.8M/63.6M [00:01<00:02, 17.1MB/s]
34%|###4 | 21.7M/63.6M [00:01<00:02, 16.3MB/s]
38%|###8 | 24.2M/63.6M [00:01<00:02, 17.3MB/s]
41%|####1 | 26.1M/63.6M [00:02<00:02, 16.6MB/s]
45%|####4 | 28.6M/63.6M [00:02<00:02, 17.4MB/s]
48%|####8 | 30.6M/63.6M [00:02<00:02, 16.9MB/s]
52%|#####1 | 33.0M/63.6M [00:02<00:01, 17.4MB/s]
55%|#####5 | 35.0M/63.6M [00:02<00:01, 16.8MB/s]
59%|#####8 | 37.4M/63.6M [00:02<00:01, 17.4MB/s]
62%|######2 | 39.5M/63.6M [00:02<00:01, 16.9MB/s]
66%|######5 | 41.9M/63.6M [00:03<00:01, 17.6MB/s]
69%|######8 | 43.9M/63.6M [00:03<00:01, 16.8MB/s]
73%|#######2 | 46.3M/63.6M [00:03<00:01, 17.5MB/s]
76%|#######5 | 48.3M/63.6M [00:03<00:00, 16.9MB/s]
80%|#######9 | 50.8M/63.6M [00:03<00:00, 17.4MB/s]
83%|########2 | 52.7M/63.6M [00:03<00:00, 16.9MB/s]
87%|########6 | 55.2M/63.6M [00:03<00:00, 17.4MB/s]
90%|########9 | 57.1M/63.6M [00:03<00:00, 16.9MB/s]
94%|#########3| 59.6M/63.6M [00:04<00:00, 17.4MB/s]
97%|#########6| 61.5M/63.6M [00:04<00:00, 16.8MB/s]
100%|##########| 63.6M/63.6M [00:04<00:00, 15.4MB/s]
tensor([[54, 20, 65, 69, 11, 92, 44, 65, 38, 2, 11, 81, 40, 64, 79, 81, 11, 81,
20, 11, 79, 77, 59, 37, 2]])
tensor([25], dtype=torch.int32)
请注意,编码值与 基于字符的编码。
中间表示形式如下所示。
外:
['HH', 'AH', 'L', 'OW', ' ', 'W', 'ER', 'L', 'D', '!', ' ', 'T', 'EH', 'K', 'S', 'T', ' ', 'T', 'AH', ' ', 'S', 'P', 'IY', 'CH', '!']
频谱图生成¶
Tacotron2
是我们用来从
编码文本。型号详情请参考
纸。
使用预训练权重实例化 Tacotron2 模型很容易, 但是,请注意,需要处理 Tacotron2 模型的输入 通过匹配的文本处理器。
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
text = "Hello world! Text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, _, _ = tacotron2.infer(processed, lengths)
plt.imshow(spec[0].cpu().detach())
![Tacotron2 流水线教程](https://pytorch.org/audio/0.10.0/_images/sphx_glr_tacotron2_pipeline_tutorial_001.png)
外:
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth
0%| | 0.00/107M [00:00<?, ?B/s]
7%|7 | 7.83M/107M [00:00<00:01, 81.9MB/s]
15%|#4 | 15.6M/107M [00:00<00:01, 78.6MB/s]
47%|####7 | 50.9M/107M [00:00<00:00, 209MB/s]
82%|########1 | 87.9M/107M [00:00<00:00, 278MB/s]
100%|##########| 107M/107M [00:00<00:00, 245MB/s]
<matplotlib.image.AxesImage object at 0x7fb3cc9ca220>
请注意,method perfos multinomial sampling,
因此,生成频谱图的过程会产生随机性。Tacotron2.infer
![Tacotron2 流水线教程](https://pytorch.org/audio/0.10.0/_images/sphx_glr_tacotron2_pipeline_tutorial_002.png)
外:
torch.Size([80, 155])
torch.Size([80, 167])
torch.Size([80, 164])
波形生成¶
生成频谱图后,最后一个过程是恢复 waveform 来自频谱图。
torchaudio
提供基于 和 的声码器。GriffinLim
WaveRNN
WaveRNN¶
继续上一节,我们可以实例化匹配的 WaveRNN 模型。
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)
text = "Hello world! Text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach())
ax2.plot(waveforms[0].cpu().detach())
torchaudio.save("_assets/output_wavernn.wav", waveforms[0:1].cpu(), sample_rate=vocoder.sample_rate)
IPython.display.Audio("_assets/output_wavernn.wav")
![Tacotron2 流水线教程](https://pytorch.org/audio/0.10.0/_images/sphx_glr_tacotron2_pipeline_tutorial_003.png)
外:
Downloading: "https://download.pytorch.org/torchaudio/models/wavernn_10k_epochs_8bits_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/wavernn_10k_epochs_8bits_ljspeech.pth
0%| | 0.00/16.7M [00:00<?, ?B/s]
100%|##########| 16.7M/16.7M [00:00<00:00, 298MB/s]
林磊¶
使用 Griffin-Lim 声码器与 WaveRNN 相同。您可以实例化
vocode 对象 和 method 并传递 spectrogram。get_vocoder
bundle = torchaudio.pipelines.TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach())
ax2.plot(waveforms[0].cpu().detach())
torchaudio.save("_assets/output_griffinlim.wav", waveforms[0:1].cpu(), sample_rate=vocoder.sample_rate)
IPython.display.Audio("_assets/output_griffinlim.wav")
![Tacotron2 流水线教程](https://pytorch.org/audio/0.10.0/_images/sphx_glr_tacotron2_pipeline_tutorial_004.png)
外:
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_ljspeech.pth
0%| | 0.00/107M [00:00<?, ?B/s]
28%|##8 | 30.6M/107M [00:00<00:00, 321MB/s]
57%|#####6 | 61.2M/107M [00:00<00:00, 308MB/s]
90%|######### | 96.9M/107M [00:00<00:00, 337MB/s]
100%|##########| 107M/107M [00:00<00:00, 335MB/s]
波辉¶
Waveglow 是 Nvidia 发布的声码器。预训练权重为
在 Torch Hub 上发布。可以使用 module 实例化模型。torch.hub
# Workaround to load model mapped on GPU
# https://stackoverflow.com/a/61840832
waveglow = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', model_math='fp32', pretrained=False)
checkpoint = torch.hub.load_state_dict_from_url('https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth', progress=False, map_location=device)
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
waveglow.load_state_dict(state_dict)
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()
with torch.no_grad():
waveforms = waveglow.infer(spec)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach())
ax2.plot(waveforms[0].cpu().detach())
torchaudio.save("_assets/output_waveglow.wav", waveforms[0:1].cpu(), sample_rate=22050)
IPython.display.Audio("_assets/output_waveglow.wav")
![Tacotron2 流水线教程](https://pytorch.org/audio/0.10.0/_images/sphx_glr_tacotron2_pipeline_tutorial_005.png)
外:
Downloading: "https://github.com/NVIDIA/DeepLearningExamples/archive/torchhub.zip" to /root/.cache/torch/hub/torchhub.zip
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/common.py:13: UserWarning: pytorch_quantization module not found, quantization will not be available
warnings.warn(
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/efficientnet.py:17: UserWarning: pytorch_quantization module not found, quantization will not be available
warnings.warn(
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/SpeechSynthesis/Tacotron2/waveglow/model.py:55: UserWarning: torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release.
The boolean parameter 'some' has been replaced with a string parameter 'mode'.
Q, R = torch.qr(A, some)
should be replaced with
Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete') (Triggered internally at ../aten/src/ATen/native/BatchLinearAlgebra.cpp:1937.)
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
Downloading: "https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth" to /root/.cache/torch/hub/checkpoints/nvidia_waveglowpyt_fp32_20190306.pth
脚本总运行时间:(2 分 35.062 秒)