MPS 后端¶
mps设备实现高性能
使用 Metal 编程框架对 MacOS 设备进行 GPU 培训。它
推出一种新设备来映射机器学习计算图和
高效的 Metal Performance Shaders Graph 框架上的基元和
分别由 Metal Performance Shaders 框架提供的 tuned 内核。
新的 MPS 后端扩展了 PyTorch 生态系统并提供现有脚本 在 GPU 上设置和运行作的功能。
要开始使用,只需将 Tensor 和 Module 移动到设备即可:mps
# Check that MPS is available
if not torch.backends.mps.is_available():
    if not torch.backends.mps.is_built():
        print("MPS not available because the current PyTorch install was not "
              "built with MPS enabled.")
    else:
        print("MPS not available because the current MacOS version is not 12.3+ "
              "and/or you do not have an MPS-enabled device on this machine.")
else:
    mps_device = torch.device("mps")
    # Create a Tensor directly on the mps device
    x = torch.ones(5, device=mps_device)
    # Or
    x = torch.ones(5, device="mps")
    # Any operation happens on the GPU
    y = x * 2
    # Move your model to mps just like any other device
    model = YourFavoriteNet()
    model.to(mps_device)
    # Now every call runs on the GPU
    pred = model(x)