目录

音频数据增强

torchaudio提供了多种方法来增强音频数据。

import torch
import torchaudio
import torchaudio.functional as F

print(torch.__version__)
print(torchaudio.__version__)

外:

1.11.0+cpu
0.11.0+cpu

准备数据和实用程序函数(跳过本节)

# @title Prepare data and utility functions. {display-mode: "form"}
# @markdown
# @markdown You do not need to look into this cell.
# @markdown Just execute once and you are good to go.
# @markdown
# @markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/),
# @markdown which is licensed under Creative Commos BY 4.0.

# -------------------------------------------------------------------------------
# Preparation of data and helper functions.
# -------------------------------------------------------------------------------

import math
import os

import matplotlib.pyplot as plt
import requests
from IPython.display import Audio, display


_SAMPLE_DIR = "_assets"

SAMPLE_WAV_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.wav"
SAMPLE_WAV_PATH = os.path.join(_SAMPLE_DIR, "steam.wav")

SAMPLE_RIR_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/room-response/rm1/impulse/Lab41-SRI-VOiCES-rm1-impulse-mc01-stu-clo.wav"  # noqa: E501
SAMPLE_RIR_PATH = os.path.join(_SAMPLE_DIR, "rir.wav")

SAMPLE_WAV_SPEECH_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"  # noqa: E501
SAMPLE_WAV_SPEECH_PATH = os.path.join(_SAMPLE_DIR, "speech.wav")

SAMPLE_NOISE_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/distractors/rm1/babb/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo.wav"  # noqa: E501
SAMPLE_NOISE_PATH = os.path.join(_SAMPLE_DIR, "bg.wav")

os.makedirs(_SAMPLE_DIR, exist_ok=True)


def _fetch_data():
    uri = [
        (SAMPLE_WAV_URL, SAMPLE_WAV_PATH),
        (SAMPLE_RIR_URL, SAMPLE_RIR_PATH),
        (SAMPLE_WAV_SPEECH_URL, SAMPLE_WAV_SPEECH_PATH),
        (SAMPLE_NOISE_URL, SAMPLE_NOISE_PATH),
    ]
    for url, path in uri:
        with open(path, "wb") as file_:
            file_.write(requests.get(url).content)


_fetch_data()


def _get_sample(path, resample=None):
    effects = [["remix", "1"]]
    if resample:
        effects.extend(
            [
                ["lowpass", f"{resample // 2}"],
                ["rate", f"{resample}"],
            ]
        )
    return torchaudio.sox_effects.apply_effects_file(path, effects=effects)


def get_sample(*, resample=None):
    return _get_sample(SAMPLE_WAV_PATH, resample=resample)


def get_speech_sample(*, resample=None):
    return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample)


def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None, ylim=None):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape
    time_axis = torch.arange(0, num_frames) / sample_rate

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].plot(time_axis, waveform[c], linewidth=1)
        axes[c].grid(True)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
        if xlim:
            axes[c].set_xlim(xlim)
        if ylim:
            axes[c].set_ylim(ylim)
    figure.suptitle(title)
    plt.show(block=False)


def print_stats(waveform, sample_rate=None, src=None):
    if src:
        print("-" * 10)
        print("Source:", src)
        print("-" * 10)
    if sample_rate:
        print("Sample Rate:", sample_rate)
    print("Shape:", tuple(waveform.shape))
    print("Dtype:", waveform.dtype)
    print(f" - Max:     {waveform.max().item():6.3f}")
    print(f" - Min:     {waveform.min().item():6.3f}")
    print(f" - Mean:    {waveform.mean().item():6.3f}")
    print(f" - Std Dev: {waveform.std().item():6.3f}")
    print()
    print(waveform)
    print()


def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].specgram(waveform[c], Fs=sample_rate)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
        if xlim:
            axes[c].set_xlim(xlim)
    figure.suptitle(title)
    plt.show(block=False)


def play_audio(waveform, sample_rate):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape
    if num_channels == 1:
        return Audio(waveform[0], rate=sample_rate)
    elif num_channels == 2:
        return Audio((waveform[0], waveform[1]), rate=sample_rate)
    else:
        raise ValueError("Waveform with more than 2 channels are not supported.")


def get_rir_sample(*, resample=None, processed=False):
    rir_raw, sample_rate = _get_sample(SAMPLE_RIR_PATH, resample=resample)
    if not processed:
        return rir_raw, sample_rate
    rir = rir_raw[:, int(sample_rate * 1.01) : int(sample_rate * 1.3)]
    rir = rir / torch.norm(rir, p=2)
    rir = torch.flip(rir, [1])
    return rir, sample_rate


def get_noise_sample(*, resample=None):
    return _get_sample(SAMPLE_NOISE_PATH, resample=resample)

应用效果和筛选

torchaudio.sox_effects()允许直接应用类似于 可用于 Tensor 对象和 file 对象音频源。sox

有两个函数可用于此:

这两个函数都接受 . 这与 command 的工作方式基本一致,但需要注意的是 ,它会自动添加一些效果,而 的 implementation 则不会。List[List[str]]soxsoxtorchaudio

可用效果列表请参考 SOX 文档

提示如果您需要动态加载和重新采样音频数据, 然后,您可以使用torchaudio.sox_effects.apply_effects_file()带效果 ."rate"

注意 torchaudio.sox_effects.apply_effects_file()接受 类文件对象或类路径对象。 似torchaudio.load(),当音频格式不能 从文件扩展名或标头推断,您可以提供 参数指定音频源的格式。format

注意这个过程是不可微分的。

# Load the data
waveform1, sample_rate1 = get_sample(resample=16000)

# Define effects
effects = [
    ["lowpass", "-1", "300"],  # apply single-pole lowpass filter
    ["speed", "0.8"],  # reduce the speed
    # This only changes sample rate, so it is necessary to
    # add `rate` effect with original sample rate after this.
    ["rate", f"{sample_rate1}"],
    ["reverb", "-w"],  # Reverbration gives some dramatic feeling
]

# Apply effects
waveform2, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor(waveform1, sample_rate1, effects)

print_stats(waveform1, sample_rate=sample_rate1, src="Original")
print_stats(waveform2, sample_rate=sample_rate2, src="Effects Applied")

外:

----------
Source: Original
----------
Sample Rate: 16000
Shape: (1, 39680)
Dtype: torch.float32
 - Max:      0.507
 - Min:     -0.448
 - Mean:    -0.000
 - Std Dev:  0.122

tensor([[ 0.0007,  0.0076,  0.0122,  ..., -0.0049, -0.0025,  0.0020]])

----------
Source: Effects Applied
----------
Sample Rate: 16000
Shape: (2, 49600)
Dtype: torch.float32
 - Max:      0.091
 - Min:     -0.091
 - Mean:    -0.000
 - Std Dev:  0.021

tensor([[0.0000, 0.0000, 0.0000,  ..., 0.0069, 0.0058, 0.0045],
        [0.0000, 0.0000, 0.0000,  ..., 0.0085, 0.0085, 0.0085]])

请注意,帧数和通道数与 应用效果后的原始值。让我们听听 音频。

源语言:

plot_waveform(waveform1, sample_rate1, title="Original", xlim=(-0.1, 3.2))
plot_specgram(waveform1, sample_rate1, title="Original", xlim=(0, 3.04))
play_audio(waveform1, sample_rate1)
  • 源语言
  • 源语言


应用的效果:

plot_waveform(waveform2, sample_rate2, title="Effects Applied", xlim=(-0.1, 3.2))
plot_specgram(waveform2, sample_rate2, title="Effects Applied", xlim=(0, 3.04))
play_audio(waveform2, sample_rate2)
  • 应用的效果
  • 应用的效果


听起来是不是更戏剧化?

模拟 Room 混响

卷积 reverb 是一个 技术,用于使干净的音频听起来像以前一样 在不同的环境中生产。

例如,使用房间脉冲响应 (RIR),我们可以制作干净的语音 听起来就像是在会议室里说的一样。

对于此过程,我们需要 RIR 数据。以下数据来自 VOiCES 数据集,但您可以录制自己的数据集 — 只需打开麦克风即可 并拍手。

sample_rate = 8000

rir_raw, _ = get_rir_sample(resample=sample_rate)

plot_waveform(rir_raw, sample_rate, title="Room Impulse Response (raw)", ylim=None)
plot_specgram(rir_raw, sample_rate, title="Room Impulse Response (raw)")
play_audio(rir_raw, sample_rate)
  • Room 脉冲响应 (raw)
  • Room 脉冲响应 (raw)


首先,我们需要清理 RIR。我们提取主要脉冲,归一化 信号 power,然后沿时间轴翻转。

rir = rir_raw[:, int(sample_rate * 1.01) : int(sample_rate * 1.3)]
rir = rir / torch.norm(rir, p=2)
rir = torch.flip(rir, [1])

print_stats(rir)
plot_waveform(rir, sample_rate, title="Room Impulse Response", ylim=None)
Room 脉冲响应

外:

Shape: (1, 2320)
Dtype: torch.float32
 - Max:      0.395
 - Min:     -0.286
 - Mean:    -0.000
 - Std Dev:  0.021

tensor([[-0.0052, -0.0076, -0.0071,  ...,  0.0184,  0.0173,  0.0070]])

然后,我们使用 RIR 滤波器对语音信号进行卷积。

speech, _ = get_speech_sample(resample=sample_rate)

speech_ = torch.nn.functional.pad(speech, (rir.shape[1] - 1, 0))
augmented = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0]

源语言:

plot_waveform(speech, sample_rate, title="Original", ylim=None)
plot_specgram(speech, sample_rate, title="Original")
play_audio(speech, sample_rate)
  • 源语言
  • 源语言


RIR 适用范围:

plot_waveform(augmented, sample_rate, title="RIR Applied", ylim=None)
plot_specgram(augmented, sample_rate, title="RIR Applied")
play_audio(augmented, sample_rate)
  • RIR 已应用
  • RIR 已应用


添加背景噪声

要向音频数据添加背景噪声,只需将噪声 Tensor 添加到 表示音频数据的 Tensor。调整 噪声强度正在改变信噪比 (SNR)。 [维基百科]

$$ \mathrm{SNR} = \frac{P_{信号}}{P_{噪音}} $$

$$ \mathrm{SNR_{dB}} = 10 \log _{{10}} \mathrm {SNR} $$

sample_rate = 8000
speech, _ = get_speech_sample(resample=sample_rate)
noise, _ = get_noise_sample(resample=sample_rate)
noise = noise[:, : speech.shape[1]]

speech_power = speech.norm(p=2)
noise_power = noise.norm(p=2)

snr_dbs = [20, 10, 3]
noisy_speeches = []
for snr_db in snr_dbs:
    snr = math.exp(snr_db / 10)
    scale = snr * noise_power / speech_power
    noisy_speeches.append((scale * speech + noise) / 2)

背景噪音:

plot_waveform(noise, sample_rate, title="Background noise")
plot_specgram(noise, sample_rate, title="Background noise")
play_audio(noise, sample_rate)
  • 背景噪音
  • 背景噪音


信噪比 20 dB:

snr_db, noisy_speech = snr_dbs[0], noisy_speeches[0]
plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
play_audio(noisy_speech, sample_rate)
  • 信噪比: 20 [dB]
  • 信噪比: 20 [dB]


信噪比 10 dB:

snr_db, noisy_speech = snr_dbs[1], noisy_speeches[1]
plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
play_audio(noisy_speech, sample_rate)
  • 信噪比: 10 [dB]
  • 信噪比: 10 [dB]


信噪比 3 dB:

snr_db, noisy_speech = snr_dbs[2], noisy_speeches[2]
plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
play_audio(noisy_speech, sample_rate)
  • 信噪比: 3 [dB]
  • 信噪比: 3 [dB]


将编解码器应用于 Tensor 对象

torchaudio.functional.apply_codec()可以将编解码器应用于 一个 Tensor 对象。

注意这个过程是不可微分的。

waveform, sample_rate = get_speech_sample(resample=8000)

plot_specgram(waveform, sample_rate, title="Original")

configs = [
    ({"format": "wav", "encoding": "ULAW", "bits_per_sample": 8}, "8 bit mu-law"),
    ({"format": "gsm"}, "GSM-FR"),
    ({"format": "mp3", "compression": -9}, "MP3"),
    ({"format": "vorbis", "compression": -1}, "Vorbis"),
]
waveforms = []
for param, title in configs:
    augmented = F.apply_codec(waveform, sample_rate, **param)
    plot_specgram(augmented, sample_rate, title=title)
    waveforms.append(augmented)
  • 源语言
  • 8 位 mu 定律
  • GSM-FR 系列
  • MP3 的
  • 沃比斯

源语言:

play_audio(waveform, sample_rate)


8 位 mu 律:

play_audio(waveforms[0], sample_rate)


GSM-FR 格式:

play_audio(waveforms[1], sample_rate)


MP3 的:

play_audio(waveforms[2], sample_rate)


沃比斯:

play_audio(waveforms[3], sample_rate)


模拟电话重新编码

结合前面的技术,我们可以模拟听起来 就像一个人在一个回声房间里通过电话交谈,人们在交谈 在后台。

sample_rate = 16000
original_speech, _ = get_speech_sample(resample=sample_rate)

plot_specgram(original_speech, sample_rate, title="Original")

# Apply RIR
rir, _ = get_rir_sample(resample=sample_rate, processed=True)
speech_ = torch.nn.functional.pad(original_speech, (rir.shape[1] - 1, 0))
rir_applied = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0]

plot_specgram(rir_applied, sample_rate, title="RIR Applied")

# Add background noise
# Because the noise is recorded in the actual environment, we consider that
# the noise contains the acoustic feature of the environment. Therefore, we add
# the noise after RIR application.
noise, _ = get_noise_sample(resample=sample_rate)
noise = noise[:, : rir_applied.shape[1]]

snr_db = 8
scale = math.exp(snr_db / 10) * noise.norm(p=2) / rir_applied.norm(p=2)
bg_added = (scale * rir_applied + noise) / 2

plot_specgram(bg_added, sample_rate, title="BG noise added")

# Apply filtering and change sample rate
filtered, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor(
    bg_added,
    sample_rate,
    effects=[
        ["lowpass", "4000"],
        [
            "compand",
            "0.02,0.05",
            "-60,-60,-30,-10,-20,-8,-5,-8,-2,-8",
            "-8",
            "-7",
            "0.05",
        ],
        ["rate", "8000"],
    ],
)

plot_specgram(filtered, sample_rate2, title="Filtered")

# Apply telephony codec
codec_applied = F.apply_codec(filtered, sample_rate2, format="gsm")

plot_specgram(codec_applied, sample_rate2, title="GSM Codec Applied")
  • 源语言
  • RIR 已应用
  • 添加的 BG 噪声
  • 过滤
  • 已应用 GSM 编解码器

演讲原文:



RIR 适用范围:

play_audio(rir_applied, sample_rate)


添加了背景噪音:

play_audio(bg_added, sample_rate)


过滤:

play_audio(filtered, sample_rate2)


编解码器应用:



脚本总运行时间:(0 分 7.864 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源