注意
单击此处下载完整的示例代码
音频重采样¶
作者: Caroline Chen, Moto Hira
本教程介绍如何使用 torchaudio 的重采样 API。
import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T
print(torch.__version__)
print(torchaudio.__version__)
2.2.0
2.2.0
制备¶
首先,我们导入模块并定义辅助函数。
import math
import timeit
import librosa
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import pandas as pd
import resampy
from IPython.display import Audio
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
DEFAULT_OFFSET = 201
def _get_log_freq(sample_rate, max_sweep_rate, offset):
"""Get freqs evenly spaced out in log-scale, between [0, max_sweep_rate // 2]
offset is used to avoid negative infinity `log(offset + x)`.
"""
start, stop = math.log(offset), math.log(offset + max_sweep_rate // 2)
return torch.exp(torch.linspace(start, stop, sample_rate, dtype=torch.double)) - offset
def _get_inverse_log_freq(freq, sample_rate, offset):
"""Find the time where the given frequency is given by _get_log_freq"""
half = sample_rate // 2
return sample_rate * (math.log(1 + freq / offset) / math.log(1 + half / offset))
def _get_freq_ticks(sample_rate, offset, f_max):
# Given the original sample rate used for generating the sweep,
# find the x-axis value where the log-scale major frequency values fall in
times, freq = [], []
for exp in range(2, 5):
for v in range(1, 10):
f = v * 10**exp
if f < sample_rate // 2:
t = _get_inverse_log_freq(f, sample_rate, offset) / sample_rate
times.append(t)
freq.append(f)
t_max = _get_inverse_log_freq(f_max, sample_rate, offset) / sample_rate
times.append(t_max)
freq.append(f_max)
return times, freq
def get_sine_sweep(sample_rate, offset=DEFAULT_OFFSET):
max_sweep_rate = sample_rate
freq = _get_log_freq(sample_rate, max_sweep_rate, offset)
delta = 2 * math.pi * freq / sample_rate
cummulative = torch.cumsum(delta, dim=0)
signal = torch.sin(cummulative).unsqueeze(dim=0)
return signal
def plot_sweep(
waveform,
sample_rate,
title,
max_sweep_rate=48000,
offset=DEFAULT_OFFSET,
):
x_ticks = [100, 500, 1000, 5000, 10000, 20000, max_sweep_rate // 2]
y_ticks = [1000, 5000, 10000, 20000, sample_rate // 2]
time, freq = _get_freq_ticks(max_sweep_rate, offset, sample_rate // 2)
freq_x = [f if f in x_ticks and f <= max_sweep_rate // 2 else None for f in freq]
freq_y = [f for f in freq if f in y_ticks and 1000 <= f <= sample_rate // 2]
figure, axis = plt.subplots(1, 1)
_, _, _, cax = axis.specgram(waveform[0].numpy(), Fs=sample_rate)
plt.xticks(time, freq_x)
plt.yticks(freq_y, freq_y)
axis.set_xlabel("Original Signal Frequency (Hz, log scale)")
axis.set_ylabel("Waveform Frequency (Hz)")
axis.xaxis.grid(True, alpha=0.67)
axis.yaxis.grid(True, alpha=0.67)
figure.suptitle(f"{title} (sample rate: {sample_rate} Hz)")
plt.colorbar(cax)
/pytorch/audio/examples/tutorials/audio_resampling_tutorial.py:32: DeprecationWarning:
Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)
but was not found to be installed on your system.
If this would cause problems for you,
please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
import pandas as pd
重采样概述¶
要将音频波形从一个频率重新采样到另一个频率,可以使用 或
。 precomputes 并缓存用于重采样的内核,
while 会动态计算它,因此 using 将导致在重新采样时加速
使用相同参数的多个波形(参见 基准测试 部分)。
transforms.Resample
functional.resample
torchaudio.transforms.Resample
两种重采样方法都使用带限 sinc 要计算的插值 信号值。实现涉及 卷积,因此我们可以利用 GPU / 多线程 性能改进。
注意
在多个子进程中使用重采样时,例如数据加载
使用多个工作进程,您的应用程序可能会创建更多
线程,您的系统无法有效处理。
在这种情况下,设置可能会有所帮助。torch.set_num_threads(1)
因为有限数量的样本只能代表有限数量的 频率、重新采样不会产生完美的结果,并且 of 参数可用于控制其质量和计算 速度。我们通过对数 正弦扫频,这是一个在 频率随时间的变化。
下面的频谱图显示了信号的频率表示, 其中 x 轴对应于原始 波形(对数刻度),y 轴频率 绘制波形,颜色强度为振幅。
sample_rate = 48000
waveform = get_sine_sweep(sample_rate)
plot_sweep(waveform, sample_rate, title="Original Waveform")
Audio(waveform.numpy()[0], rate=sample_rate)
现在我们对其进行重新采样 (downsample)。
我们看到,在重采样波形的频谱图中,有一个 伪影,这在原始波形中不存在。 这种效果称为锯齿。此页面有 解释它是如何发生的,以及为什么它看起来像一个反射。
resample_rate = 32000
resampler = T.Resample(sample_rate, resample_rate, dtype=waveform.dtype)
resampled_waveform = resampler(waveform)
plot_sweep(resampled_waveform, resample_rate, title="Resampled Waveform")
Audio(resampled_waveform.numpy()[0], rate=resample_rate)
使用参数控制重采样质量¶
低通滤波器宽度¶
由于用于插值的滤波器无限延伸,因此该参数用于控制
用于对插值进行窗口化的 filter。它也被称为
自插值通过
在每个时间单位上为零。使用较大的滤波器更清晰、更精确,但计算量更大
贵。lowpass_filter_width
lowpass_filter_width
sample_rate = 48000
resample_rate = 32000
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, lowpass_filter_width=6)
plot_sweep(resampled_waveform, resample_rate, title="lowpass_filter_width=6")
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, lowpass_filter_width=128)
plot_sweep(resampled_waveform, resample_rate, title="lowpass_filter_width=128")
滚降¶
该参数表示为奈奎斯特频率的分数
frequency,即给定的
有限采样率。 确定低通滤波器截止和
控制混叠的程度,当频率
高于奈奎斯特频率的 Nyquist 频率被映射到较低的频率。下滚降
因此,将减少锯齿的数量,但它也会减少
一些更高的频率。rolloff
rolloff
sample_rate = 48000
resample_rate = 32000
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, rolloff=0.99)
plot_sweep(resampled_waveform, resample_rate, title="rolloff=0.99")
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, rolloff=0.8)
plot_sweep(resampled_waveform, resample_rate, title="rolloff=0.8")
Window 函数¶
默认情况下,的 resample 使用 Hann 窗口过滤器,即
加权余弦函数。它还支持 Kaiser 窗口、
,这是一个近乎最优的窗口函数,它包含一个额外的参数,该参数允许设计
filter 和 impulse 的宽度。这可以使用 parameter 进行控制。torchaudio
beta
resampling_method
sample_rate = 48000
resample_rate = 32000
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, resampling_method="sinc_interp_hann")
plot_sweep(resampled_waveform, resample_rate, title="Hann Window Default")
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, resampling_method="sinc_interp_kaiser")
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Default")
与 librosa 的比较¶
torchaudio
的 resample 函数可用于生成类似于
Librosa (Resampy) 的 Kaiser 窗口重新采样,有一些噪声
sample_rate = 48000
resample_rate = 32000
kaiser_best¶
resampled_waveform = F.resample(
waveform,
sample_rate,
resample_rate,
lowpass_filter_width=64,
rolloff=0.9475937167399596,
resampling_method="sinc_interp_kaiser",
beta=14.769656459379492,
)
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Best (torchaudio)")
librosa_resampled_waveform = torch.from_numpy(
librosa.resample(waveform.squeeze().numpy(), orig_sr=sample_rate, target_sr=resample_rate, res_type="kaiser_best")
).unsqueeze(0)
plot_sweep(librosa_resampled_waveform, resample_rate, title="Kaiser Window Best (librosa)")
mse = torch.square(resampled_waveform - librosa_resampled_waveform).mean().item()
print("torchaudio and librosa kaiser best MSE:", mse)
torchaudio and librosa kaiser best MSE: 2.0806901153660115e-06
kaiser_fast¶
resampled_waveform = F.resample(
waveform,
sample_rate,
resample_rate,
lowpass_filter_width=16,
rolloff=0.85,
resampling_method="sinc_interp_kaiser",
beta=8.555504641634386,
)
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Fast (torchaudio)")
librosa_resampled_waveform = torch.from_numpy(
librosa.resample(waveform.squeeze().numpy(), orig_sr=sample_rate, target_sr=resample_rate, res_type="kaiser_fast")
).unsqueeze(0)
plot_sweep(librosa_resampled_waveform, resample_rate, title="Kaiser Window Fast (librosa)")
mse = torch.square(resampled_waveform - librosa_resampled_waveform).mean().item()
print("torchaudio and librosa kaiser fast MSE:", mse)
torchaudio and librosa kaiser fast MSE: 2.5200744248601437e-05
性能基准测试¶
以下是
两对采样率。我们展示了性能影响
、窗口类型和采样率可以
有。此外,我们还提供了与 的比较,并使用它们的相应参数
在。lowpass_filter_width
librosa
kaiser_best
kaiser_fast
torchaudio
print(f"torchaudio: {torchaudio.__version__}")
print(f"librosa: {librosa.__version__}")
print(f"resampy: {resampy.__version__}")
torchaudio: 2.2.0
librosa: 0.10.0
resampy: 0.2.2
def benchmark_resample_functional(
waveform,
sample_rate,
resample_rate,
lowpass_filter_width=6,
rolloff=0.99,
resampling_method="sinc_interp_hann",
beta=None,
iters=5,
):
return (
timeit.timeit(
stmt="""
torchaudio.functional.resample(
waveform,
sample_rate,
resample_rate,
lowpass_filter_width=lowpass_filter_width,
rolloff=rolloff,
resampling_method=resampling_method,
beta=beta,
)
""",
setup="import torchaudio",
number=iters,
globals=locals(),
)
* 1000
/ iters
)
def benchmark_resample_transforms(
waveform,
sample_rate,
resample_rate,
lowpass_filter_width=6,
rolloff=0.99,
resampling_method="sinc_interp_hann",
beta=None,
iters=5,
):
return (
timeit.timeit(
stmt="resampler(waveform)",
setup="""
import torchaudio
resampler = torchaudio.transforms.Resample(
sample_rate,
resample_rate,
lowpass_filter_width=lowpass_filter_width,
rolloff=rolloff,
resampling_method=resampling_method,
dtype=waveform.dtype,
beta=beta,
)
resampler.to(waveform.device)
""",
number=iters,
globals=locals(),
)
* 1000
/ iters
)
def benchmark_resample_librosa(
waveform,
sample_rate,
resample_rate,
res_type=None,
iters=5,
):
waveform_np = waveform.squeeze().numpy()
return (
timeit.timeit(
stmt="""
librosa.resample(
waveform_np,
orig_sr=sample_rate,
target_sr=resample_rate,
res_type=res_type,
)
""",
setup="import librosa",
number=iters,
globals=locals(),
)
* 1000
/ iters
)
def benchmark(sample_rate, resample_rate):
times, rows = [], []
waveform = get_sine_sweep(sample_rate).to(torch.float32)
args = (waveform, sample_rate, resample_rate)
# sinc 64 zero-crossings
f_time = benchmark_resample_functional(*args, lowpass_filter_width=64)
t_time = benchmark_resample_transforms(*args, lowpass_filter_width=64)
times.append([None, f_time, t_time])
rows.append("sinc (width 64)")
# sinc 6 zero-crossings
f_time = benchmark_resample_functional(*args, lowpass_filter_width=16)
t_time = benchmark_resample_transforms(*args, lowpass_filter_width=16)
times.append([None, f_time, t_time])
rows.append("sinc (width 16)")
# kaiser best
kwargs = {
"lowpass_filter_width": 64,
"rolloff": 0.9475937167399596,
"resampling_method": "sinc_interp_kaiser",
"beta": 14.769656459379492,
}
lib_time = benchmark_resample_librosa(*args, res_type="kaiser_best")
f_time = benchmark_resample_functional(*args, **kwargs)
t_time = benchmark_resample_transforms(*args, **kwargs)
times.append([lib_time, f_time, t_time])
rows.append("kaiser_best")
# kaiser fast
kwargs = {
"lowpass_filter_width": 16,
"rolloff": 0.85,
"resampling_method": "sinc_interp_kaiser",
"beta": 8.555504641634386,
}
lib_time = benchmark_resample_librosa(*args, res_type="kaiser_fast")
f_time = benchmark_resample_functional(*args, **kwargs)
t_time = benchmark_resample_transforms(*args, **kwargs)
times.append([lib_time, f_time, t_time])
rows.append("kaiser_fast")
df = pd.DataFrame(times, columns=["librosa", "functional", "transforms"], index=rows)
return df
def plot(df):
print(df.round(2))
ax = df.plot(kind="bar")
plt.ylabel("Time Elapsed [ms]")
plt.xticks(rotation=0, fontsize=10)
for cont, col, color in zip(ax.containers, df.columns, mcolors.TABLEAU_COLORS):
label = ["N/A" if v != v else str(v) for v in df[col].round(2)]
ax.bar_label(cont, labels=label, color=color, fontweight="bold", fontsize="x-small")
下采样 (48 -> 44.1 kHz)¶
df = benchmark(48_000, 44_100)
plot(df)
librosa functional transforms
sinc (width 64) NaN 0.81 0.38
sinc (width 16) NaN 0.71 0.32
kaiser_best 80.86 1.25 0.37
kaiser_fast 7.87 0.96 0.33
下采样 (16 -> 8 kHz)¶
df = benchmark(16_000, 8_000)
plot(df)
librosa functional transforms
sinc (width 64) NaN 1.27 1.09
sinc (width 16) NaN 0.50 0.36
kaiser_best 11.24 1.33 1.17
kaiser_fast 3.19 0.59 0.40
上采样 (44.1 -> 48 kHz)¶
df = benchmark(44_100, 48_000)
plot(df)
librosa functional transforms
sinc (width 64) NaN 0.84 0.35
sinc (width 16) NaN 0.70 0.35
kaiser_best 32.97 1.08 0.37
kaiser_fast 7.90 0.95 0.35
上采样 (8 -> 16 kHz)¶
df = benchmark(8_000, 16_000)
plot(df)
librosa functional transforms
sinc (width 64) NaN 0.67 0.47
sinc (width 16) NaN 0.36 0.20
kaiser_best 11.14 0.70 0.48
kaiser_fast 2.96 0.40 0.22
总结¶
详细说明结果:
较大的结果会产生较大的重采样核, 因此增加了内核计算的计算时间 和卷积
lowpass_filter_width
using 会导致计算时间比 default 长,因为计算中间 窗口值
sinc_interp_kaiser
sinc_interp_hann
采样率和重采样率之间的 GCD 较大 在允许更小的内核和更快的内核计算的简化中。
脚本总运行时间:(0 分 3.300 秒)