目录

使用 MVDR 波束成形进行语音增强

作者倪兆恒

1. 概述

这是关于应用 Minimum Variance Distortionless 的教程 响应 (MVDR) 波束成形,用于估计增强语音 TorchAudio 的 TorchAudio 中。

步骤:

  • 通过划分清音/噪声来生成理想的比率掩码 (IRM) magnitude 按混合大小。

  • 使用 估算功率谱密度 (PSD) 矩阵。

  • 使用 MVDR 模块估计增强语音 ()。

  • 对两种方法进行基准测试 ( 和 来计算 参考麦克风的相对传递函数 (RTF) 矩阵。

import torch
import torchaudio
import torchaudio.functional as F

print(torch.__version__)
print(torchaudio.__version__)


import matplotlib.pyplot as plt
import mir_eval
from IPython.display import Audio
2.1.1
2.1.0

2. 准备工作

2.1. 导入软件包

首先,我们安装并导入必要的软件包。

mir_eval、 和 软件包是必需的 评估语音增强性能。pesqpystoi

# When running this example in notebook, install the following packages.
# !pip3 install mir_eval
# !pip3 install pesq
# !pip3 install pystoi

from pesq import pesq
from pystoi import stoi
from torchaudio.utils import download_asset

2.2. 下载音频数据

多通道音频示例选自 ConferencingSpeech 数据集。

原始文件名为

SSB07200001\#noise-sound-bible-0038\#7.86_6.16_3.00_3.14_4.84_134.5285_191.7899_0.4735\#15217\#25.16333303751458\#0.2101221178590021.wav

它是用以下方式生成的:

  • SSB07200001.wav来自 AISHELL-3(Apache 许可证 v.2.0)

  • noise-sound-bible-0038.wav来自 MUSAN (Attribution 4.0 国际 — CC BY 4.0)

SAMPLE_RATE = 16000
SAMPLE_CLEAN = download_asset("tutorial-assets/mvdr/clean_speech.wav")
SAMPLE_NOISE = download_asset("tutorial-assets/mvdr/noise.wav")
  0%|          | 0.00/0.98M [00:00<?, ?B/s]
100%|##########| 0.98M/0.98M [00:00<00:00, 245MB/s]

  0%|          | 0.00/1.95M [00:00<?, ?B/s]
100%|##########| 1.95M/1.95M [00:00<00:00, 333MB/s]

2.3. 辅助函数

def plot_spectrogram(stft, title="Spectrogram"):
    magnitude = stft.abs()
    spectrogram = 20 * torch.log10(magnitude + 1e-8).numpy()
    figure, axis = plt.subplots(1, 1)
    img = axis.imshow(spectrogram, cmap="viridis", vmin=-100, vmax=0, origin="lower", aspect="auto")
    axis.set_title(title)
    plt.colorbar(img, ax=axis)


def plot_mask(mask, title="Mask"):
    mask = mask.numpy()
    figure, axis = plt.subplots(1, 1)
    img = axis.imshow(mask, cmap="viridis", origin="lower", aspect="auto")
    axis.set_title(title)
    plt.colorbar(img, ax=axis)


def si_snr(estimate, reference, epsilon=1e-8):
    estimate = estimate - estimate.mean()
    reference = reference - reference.mean()
    reference_pow = reference.pow(2).mean(axis=1, keepdim=True)
    mix_pow = (estimate * reference).mean(axis=1, keepdim=True)
    scale = mix_pow / (reference_pow + epsilon)

    reference = scale * reference
    error = estimate - reference

    reference_pow = reference.pow(2)
    error_pow = error.pow(2)

    reference_pow = reference_pow.mean(axis=1)
    error_pow = error_pow.mean(axis=1)

    si_snr = 10 * torch.log10(reference_pow) - 10 * torch.log10(error_pow)
    return si_snr.item()


def generate_mixture(waveform_clean, waveform_noise, target_snr):
    power_clean_signal = waveform_clean.pow(2).mean()
    power_noise_signal = waveform_noise.pow(2).mean()
    current_snr = 10 * torch.log10(power_clean_signal / power_noise_signal)
    waveform_noise *= 10 ** (-(target_snr - current_snr) / 20)
    return waveform_clean + waveform_noise


def evaluate(estimate, reference):
    si_snr_score = si_snr(estimate, reference)
    (
        sdr,
        _,
        _,
        _,
    ) = mir_eval.separation.bss_eval_sources(reference.numpy(), estimate.numpy(), False)
    pesq_mix = pesq(SAMPLE_RATE, estimate[0].numpy(), reference[0].numpy(), "wb")
    stoi_mix = stoi(reference[0].numpy(), estimate[0].numpy(), SAMPLE_RATE, extended=False)
    print(f"SDR score: {sdr[0]}")
    print(f"Si-SNR score: {si_snr_score}")
    print(f"PESQ score: {pesq_mix}")
    print(f"STOI score: {stoi_mix}")

3. 生成理想比例掩码 (IRM)

3.1. 加载音频数据

waveform_clean, sr = torchaudio.load(SAMPLE_CLEAN)
waveform_noise, sr2 = torchaudio.load(SAMPLE_NOISE)
assert sr == sr2 == SAMPLE_RATE
# The mixture waveform is a combination of clean and noise waveforms with a desired SNR.
target_snr = 3
waveform_mix = generate_mixture(waveform_clean, waveform_noise, target_snr)

注意:为了提高计算鲁棒性,建议将 波形为双精度浮点 ( 或 ) 值。torch.float64torch.double

3.2. 计算 STFT 系数

N_FFT = 1024
N_HOP = 256
stft = torchaudio.transforms.Spectrogram(
    n_fft=N_FFT,
    hop_length=N_HOP,
    power=None,
)
istft = torchaudio.transforms.InverseSpectrogram(n_fft=N_FFT, hop_length=N_HOP)

stft_mix = stft(waveform_mix)
stft_clean = stft(waveform_clean)
stft_noise = stft(waveform_noise)

3.2.1. 可视化混合语音

我们评估混合语音或增强语音的质量 使用以下三个指标:

  • 信失真比 (SDR)

  • Scale-invariant 信噪比(Si-SNR,或某些论文中的 Si-SDR)

  • 语音质量感知评估 (PESQ)

我们还使用短时目标可理解性来评估语音的可理解性 (STOI) 指标。

plot_spectrogram(stft_mix[0], "Spectrogram of Mixture Speech (dB)")
evaluate(waveform_mix[0:1], waveform_clean[0:1])
Audio(waveform_mix[0], rate=SAMPLE_RATE)
混合语音的频谱图 (dB)
SDR score: 4.140362181778018
Si-SNR score: 4.104058905536078
PESQ score: 2.0084526538848877
STOI score: 0.7724339398714715


3.2.2. 可视化干净的语音

plot_spectrogram(stft_clean[0], "Spectrogram of Clean Speech (dB)")
Audio(waveform_clean[0], rate=SAMPLE_RATE)
清晰语音的频谱图 (dB)


3.2.3. 可视化噪声

plot_spectrogram(stft_noise[0], "Spectrogram of Noise (dB)")
Audio(waveform_noise[0], rate=SAMPLE_RATE)
噪声频谱图 (dB)


3.3. 定义参考麦克风

我们选择阵列中的第一个麦克风作为演示的参考通道。 参考通道的选择可能取决于麦克风阵列的设计。

您还可以应用端到端神经网络,该网络同时估计参考通道和 PSD 矩阵,然后通过 MVDR 模块获得增强的 STFT 系数。

3.4. 计算 IRM

def get_irms(stft_clean, stft_noise):
    mag_clean = stft_clean.abs() ** 2
    mag_noise = stft_noise.abs() ** 2
    irm_speech = mag_clean / (mag_clean + mag_noise)
    irm_noise = mag_noise / (mag_clean + mag_noise)
    return irm_speech[REFERENCE_CHANNEL], irm_noise[REFERENCE_CHANNEL]


irm_speech, irm_noise = get_irms(stft_clean, stft_noise)

3.4.1. 目标语音的 IRM 可视化

plot_mask(irm_speech, "IRM of the Target Speech")
目标语音的 IRM

3.4.2. 可视化噪声的 IRM

plot_mask(irm_noise, "IRM of the Noise")
噪声的 IRM

4. 计算 PSD 矩阵

计算给定的时不变 PSD 矩阵 混合语音的多通道复值 STFT 系数 和时频掩码。

PSD 矩阵的形状是 (..., freq, channel, channel)。

psd_transform = torchaudio.transforms.PSD()

psd_speech = psd_transform(stft_mix, irm_speech)
psd_noise = psd_transform(stft_mix, irm_noise)

5. 使用 SoudenMVDR 进行波束成形

5.1. 应用波束成形

采用多通道 混合语音的复值 STFT 系数,PSD 矩阵 目标 speech and noise,以及 Reference channel 输入。

输出是增强语音的单通道复值 STFT 系数。 然后,我们可以通过将这个输出传递给模块来获得增强的波形。

mvdr_transform = torchaudio.transforms.SoudenMVDR()
stft_souden = mvdr_transform(stft_mix, psd_speech, psd_noise, reference_channel=REFERENCE_CHANNEL)
waveform_souden = istft(stft_souden, length=waveform_mix.shape[-1])

5.2. SoudenMVDR 的结果

plot_spectrogram(stft_souden, "Enhanced Spectrogram by SoudenMVDR (dB)")
waveform_souden = waveform_souden.reshape(1, -1)
evaluate(waveform_souden, waveform_clean[0:1])
Audio(waveform_souden, rate=SAMPLE_RATE)
SoudenMVDR 的增强频谱图 (dB)
SDR score: 17.946234447508765
Si-SNR score: 12.215202612266587
PESQ score: 3.3447437286376953
STOI score: 0.8712864479161743


6. 使用 RTFMVDR 的波束成形

6.1. 计算 RTF

TorchAudio 提供了两种方法来计算 目标演讲:

  • ,它应用 EigenValue 分解为目标语音的 PSD 矩阵,得到 RTF 矩阵。

  • ,它应用幂迭代 方法。您可以使用 argument 指定迭代次数 。n_iter

6.2. 应用波束成形

采用多通道 混合语音的复值 STFT 系数,目标语音的 RTF 矩阵, 噪声的 PSD 矩阵和参考通道输入。

输出是增强语音的单通道复值 STFT 系数。 然后,我们可以通过将这个输出传递给模块来获得增强的波形。

mvdr_transform = torchaudio.transforms.RTFMVDR()

# compute the enhanced speech based on F.rtf_evd
stft_rtf_evd = mvdr_transform(stft_mix, rtf_evd, psd_noise, reference_channel=REFERENCE_CHANNEL)
waveform_rtf_evd = istft(stft_rtf_evd, length=waveform_mix.shape[-1])

# compute the enhanced speech based on F.rtf_power
stft_rtf_power = mvdr_transform(stft_mix, rtf_power, psd_noise, reference_channel=REFERENCE_CHANNEL)
waveform_rtf_power = istft(stft_rtf_power, length=waveform_mix.shape[-1])

6.3. 使用 rtf_evd 的 RTFMVDR 的结果

plot_spectrogram(stft_rtf_evd, "Enhanced Spectrogram by RTFMVDR and F.rtf_evd (dB)")
waveform_rtf_evd = waveform_rtf_evd.reshape(1, -1)
evaluate(waveform_rtf_evd, waveform_clean[0:1])
Audio(waveform_rtf_evd, rate=SAMPLE_RATE)
通过 RTFMVDR 和 F.rtf_evd 增强的三维频谱图 (dB)
SDR score: 11.880210635280273
Si-SNR score: 10.714419996128061
PESQ score: 3.083890914916992
STOI score: 0.8261544910053075


6.4. 使用 rtf_power 的 RTFMVDR 的结果

plot_spectrogram(stft_rtf_power, "Enhanced Spectrogram by RTFMVDR and F.rtf_power (dB)")
waveform_rtf_power = waveform_rtf_power.reshape(1, -1)
evaluate(waveform_rtf_power, waveform_clean[0:1])
Audio(waveform_rtf_power, rate=SAMPLE_RATE)
通过 RTFMVDR 和 F.rtf_power (dB) 增强的三维频谱图
SDR score: 15.424590276934103
Si-SNR score: 13.035440892133451
PESQ score: 3.487997531890869
STOI score: 0.8798278461896808


脚本总运行时间:(0 分 1.840 秒)

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源