目录

Localhost

class torchx.schedulers.local_scheduler.LocalScheduler(session_name: str, cache_size: int = 100)[source]

Schedules on localhost. Containers are modeled as processes and certain properties of the container that are either not relevant or that cannot be enforced for localhost runs are ignored. Properties that are ignored:

  1. Resource requirements

  2. Resource limit enforcements

  3. Retry policies

  4. Retry counts (no retries supported)

  5. Deployment preferences

..note:: Use this scheduler sparingly since an application

that runs successfully on a session backed by this scheduler may not work on an actual production cluster using a different scheduler.

describe(app_id: str)Optional[torchx.schedulers.api.DescribeAppResponse][source]

Describes the specified application.

Returns

AppDef description or None if the app does not exist.

log_iter(app_id: str, role_name: str, k: int = 0, regex: Optional[str] = None, since: Optional[datetime.datetime] = None, until: Optional[datetime.datetime] = None, should_tail: bool = False)Iterable[str][source]

Returns an iterator to the log lines of the k``th replica of the ``role. The iterator ends end all qualifying log lines have been read.

If the scheduler supports time-based cursors fetching log lines for custom time ranges, then the since, until fields are honored, otherwise they are ignored. Not specifying since and until is equivalent to getting all available log lines. If the until is empty, then the iterator behaves like tail -f, following the log output until the job reaches a terminal state.

The exact definition of what constitutes a log is scheduler specific. Some schedulers may consider stderr or stdout as the log, others may read the logs from a log file.

Behaviors and assumptions:

  1. Produces an undefined-behavior if called on an app that does not exist The caller should check that the app exists using exists(app_id) prior to calling this method.

  2. Is not stateful, calling this method twice with same parameters returns a new iterator. Prior iteration progress is lost.

  3. Does not always support log-tailing. Not all schedulers support live log iteration (e.g. tailing logs while the app is running). Refer to the specific scheduler’s documentation for the iterator’s behavior.

3.1 If the scheduler supports log-tailing, it should be controlled

by``should_tail`` parameter.

  1. Does not guarantee log retention. It is possible that by the time this method is called, the underlying scheduler may have purged the log records for this application. If so this method raises an arbitrary exception.

  2. If should_tail is True, the method only raises a StopIteration exception when the accessible log lines have been fully exhausted and the app has reached a final state. For instance, if the app gets stuck and does not produce any log lines, then the iterator blocks until the app eventually gets killed (either via timeout or manually) at which point it raises a StopIteration.

    If should_tail is False, the method raises StopIteration when there are no more logs.

  3. Need not be supported by all schedulers.

  4. Some schedulers may support line cursors by supporting __getitem__ (e.g. iter[50] seeks to the 50th log line).

Returns

An Iterator over log lines of the specified role replica

Raises

NotImplementedError - if the scheduler does not support log iteration

run_opts()torchx.specs.api.runopts[source]

Returns the run configuration options expected by the scheduler. Basically a --help for the run API.

schedule(dryrun_info: torchx.specs.api.AppDryRunInfo[torchx.schedulers.local_scheduler.PopenRequest])str[source]

Same as submit except that it takes an AppDryRunInfo. Implementors are encouraged to implement this method rather than directly implementing submit since submit can be trivially implemented by:

dryrun_info = self.submit_dryrun(app, cfg)
return schedule(dryrun_info)

Image Providers

class torchx.schedulers.local_scheduler.ImageProvider[source]

Manages downloading and setting up an on localhost. This is only needed for LocalhostScheduler since typically real schedulers will do this on-behalf of the user.

abstract fetch(image: str)str[source]

Pulls the given image and returns a path to the pulled image on the local host.

abstract get_command(image: str, args: List[str], env_vars: Dict[str, str])List[str][source]

Returns the command line required to run the specified image.

class torchx.schedulers.local_scheduler.LocalDirectoryImageProvider(cfg: torchx.specs.api.RunConfig)[source]

Interprets the image name as the path to a directory on local host. Does not “fetch” (e.g. download) anything. Used in conjunction with LocalScheduler to run local binaries.

The image name must be an absolute path and must exist.

Example:

  1. fetch(Image(name="/tmp/foobar")) returns /tmp/foobar

  2. fetch(Image(name="foobar")) raises ValueError

  3. fetch(Image(name="/tmp/dir/that/does/not_exist")) raises ValueError

fetch(image: str)str[source]
Raises

ValueError - if the image name is not an absolute dir – and if it does not exist or is not a directory

get_command(image: str, args: List[str], env_vars: Dict[str, str])List[str][source]

Returns the command line required to run the specified image.

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源