GCP 批处理¶
这包含可用于运行 TorchX 的 TorchX GCP Batch 调度程序 组件。
此调度程序处于原型阶段,如有更改,恕不另行通知。
先决条件¶
您需要通过启用和设置将 GCP 项目配置为使用 Batch。 查看 https://cloud.google.com/batch/docs/get-started#prerequisites
- torchx.schedulers.gcp_batch_scheduler 类。GCPBatchScheduler (session_name: str, client: Optional[Any] = None)[来源]¶
基地:
Scheduler
[GCPBatchOpts
]GCPBatchScheduler 是 GCP Batch 的 TorchX 调度接口。
$ pip install torchx[gcp_batch] $ torchx run --scheduler gcp_batch utils.echo --msg hello # This launches a job with app handle like gcp_batch://torchx/project:location:app_id1234 and prints it $ torchx status gcp_batch://torchx/project:location:app_id1234 ...
身份验证是使用 gcloud 凭证处理从环境中加载的。
配置选项
usage: [project=PROJECT],[location=LOCATION] optional arguments: project=PROJECT (str, None) Name of the GCP project. Defaults to the configured GCP project in the environment location=LOCATION (str, us-central1) Name of the location to schedule the job in. Defaults to us-central1
兼容性
特征
计划程序支持
获取日志
✔️
分布式作业
✔️
取消作业
✔️
描述任务
✔️
工作区 / 修补
❌
坐骑
❌
弹性
❌
- describe(app_id: str) 可选[DescribeAppResponse] [来源]¶
描述指定的应用程序。
- 结果
AppDef 描述,或者应用程序不存在。
None
- list() List[ListAppResponse] [来源]¶
对于在调度程序上启动的应用程序,此 API 返回 ListAppResponse 列表 对象,每个对象都有 App ID 及其 Status。 注意:此 API 处于原型阶段,可能会发生更改。
- log_iter(app_id: str, role_name: str = '', k: int = 0,正则表达式:可选[str] = 无,因为:可选[日期时间]] = 无,直到:可选[datetime] = 无,should_tail: bool = False, streams: 可选[Stream] = None) Iterable[str] [来源]¶
返回 . 当读取了所有符合条件的 log 行时,迭代器结束。
k``th replica of the ``role
如果调度程序支持基于时间的游标获取日志行 对于自定义时间范围,则 , 字段为 honored,否则将被忽略。未指定 ,相当于获取所有可用的日志行。如果 是 empty,则迭代器的行为类似于 ,跟在日志输出之后 直到作业达到 END 状态。
since
until
since
until
until
tail -f
构成日志的确切定义特定于计划程序。一些 调度器可能会将 stderr 或 stdout 视为日志,其他人可能会读取日志 从日志文件中。
行为和假设:
如果在不存在的应用程序上调用,则生成 undefined-behavior 调用方应在调用此方法之前检查应用是否存在 using。
exists(app_id)
不是有状态的,使用相同的参数调用此方法两次 返回一个新的迭代器。先前迭代 进度丢失。
并不总是支持对数拖尾。并非所有调度程序都支持 live 日志迭代(例如,在应用程序运行时跟踪日志)。指 Iterator 行为的特定 scheduler 文档。
- 3.1 如果调度器支持 log-tailing,应该对其进行控制
by 参数。
should_tail
不保证日志保留。有可能到这个 方法调用时,底层调度程序可能已经清除了日志记录 对于此应用程序。如果是这样,此方法将引发任意异常。
如果为 True,则该方法仅引发异常 当可访问的日志行已完全耗尽并且应用程序已达到 最终状态。例如,如果应用程序卡住并且没有产生任何日志行, 然后 iterator 会阻塞,直到应用程序最终被杀死(通过 timeout 或手动),此时它会引发一个 .
should_tail
StopIteration
StopIteration
如果为 False,则当没有更多日志时,该方法将引发。
should_tail
StopIteration
不需要所有调度程序都支持。
一些调度器可能通过支持 line cursor(例如 寻找第 50 个对数行)。
__getitem__
iter[50]
- 保留空格,每个新行应包含 。自
\n
支持交互式进度条返回的行不需要 include 的 m,但随后应打印时不带换行符 正确处理回车。
\n
\r
- 保留空格,每个新行应包含 。自
- 参数
streams – 要选择的 IO 输出流。 其中之一: combined, stdout, stderr. 如果调度程序不支持所选流,它将 throw 一个 ValueError 的 Error。
- 结果
指定角色副本的 over log lines
Iterator
- 提升:
NotImplementedError – 如果调度程序不支持日志迭代
- schedule(dryrun_info: AppDryRunInfo[GCPBatchJob]) str [源代码]¶
相同,只是它需要一个 . 鼓励实现者实现此方法,而不是 直接实现 since 可以很简单 实施者:
submit
AppDryRunInfo
submit
submit
dryrun_info = self.submit_dryrun(app, cfg) return schedule(dryrun_info)
- torchx.schedulers.gcp_batch_scheduler 类。GCPBatchJob(名称:str,项目:str,位置:str,job_def: “batch_v1。约伯')[来源]¶
参考¶
- torchx.schedulers.gcp_batch_scheduler。create_scheduler(session_name: str, **kwargs: object) GCPBatchScheduler [来源]¶