目录

TorchRL 简介

此演示在 ICML 2022 的行业演示日上进行了演示。

它很好地概述了 TorchRL 的功能。请随时联系我们 发送至 vmoens@fbcom 或提交问题(如果您对 它。

TorchRL 是 PyTorch 的开源强化学习 (RL) 库。

https://github.com/pytorch/rl

PyTorch 生态系统团队 (Meta) 已决定投资该库,以 为在研究环境中开发 RL 解决方案提供领先的平台。

它为 RL 提供了 pytorch 和 python 优先、低级和高级抽象 # 旨在高效、文档化和 经过适当测试。 该代码旨在支持 RL 研究。其中大部分是用 Python 以高度模块化的方式进行,以便研究人员可以轻松地交换 组件,轻松转换它们或编写新的组件。

此存储库尝试与现有的 pytorch 生态系统库保持一致 因为它有一个数据集支柱 (torchrl/envs)、转换、模型、数据 实用程序(例如收集器和容器)等。TorchRL 的目标是 尽可能少的依赖项(Python 标准库、NumPy 和 PyTorch)。 常见的环境库(例如 OpenAI gym)是可选的。

内容
../_images/aafig-1f3b6e30cfaaae3f21ed3b55ebfc722276b91b6f.svg

与其他领域不同,RL 与其说是媒体,不如说是算法。因此,它 更难制造真正独立的组件。

TorchRL 不是什么:

  • 算法的集合:我们不打算提供 RL 算法的 SOTA 实现, 但我们仅提供这些算法作为如何使用该库的示例。

  • 研究框架:TorchRL 中的模块化有两种风格。首先,我们尝试 构建可重用的组件,以便它们可以轻松地相互交换。 其次,我们尽最大努力使组件可以独立于其他组件使用 的库。

TorchRL 的核心依赖项非常少,主要是 PyTorch 和 numpy。都 其他依赖项(gym、torchvision、wandb / Tensorboard)是可选的。

数据

张量字典

import torch
from tensordict import TensorDict

让我们创建一个 TensorDict。构造函数接受许多不同的格式,例如传递 dict 或使用关键字参数:

batch_size = 5
data = TensorDict(
    key1=torch.zeros(batch_size, 3),
    key2=torch.zeros(batch_size, 5, 6, dtype=torch.bool),
    batch_size=[batch_size],
)
print(data)
TensorDict(
    fields={
        key1: Tensor(shape=torch.Size([5, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        key2: Tensor(shape=torch.Size([5, 5, 6]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([5]),
    device=None,
    is_shared=False)

您可以沿 TensorDict 以及查询键为 TensorDict 编制索引。batch_size

print(data[2])
print(data["key1"] is data.get("key1"))
TensorDict(
    fields={
        key1: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
        key2: Tensor(shape=torch.Size([5, 6]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
True

下面展示了如何堆叠多个 TensorDict。这在编写转出循环时特别有用!

data1 = TensorDict(
    {
        "key1": torch.zeros(batch_size, 1),
        "key2": torch.zeros(batch_size, 5, 6, dtype=torch.bool),
    },
    batch_size=[batch_size],
)

data2 = TensorDict(
    {
        "key1": torch.ones(batch_size, 1),
        "key2": torch.ones(batch_size, 5, 6, dtype=torch.bool),
    },
    batch_size=[batch_size],
)

data = torch.stack([data1, data2], 0)
data.batch_size, data["key1"]
(torch.Size([2, 5]), tensor([[[0.],
         [0.],
         [0.],
         [0.],
         [0.]],

        [[1.],
         [1.],
         [1.],
         [1.],
         [1.]]]))

以下是 TensorDict 的其他一些功能:查看、排列、共享内存或扩展。

print(
    "view(-1): ",
    data.view(-1).batch_size,
    data.view(-1).get("key1").shape,
)

print("to device: ", data.to("cpu"))

# print("pin_memory: ", data.pin_memory())

print("share memory: ", data.share_memory_())

print(
    "permute(1, 0): ",
    data.permute(1, 0).batch_size,
    data.permute(1, 0).get("key1").shape,
)

print(
    "expand: ",
    data.expand(3, *data.batch_size).batch_size,
    data.expand(3, *data.batch_size).get("key1").shape,
)
view(-1):  torch.Size([10]) torch.Size([10, 1])
to device:  TensorDict(
    fields={
        key1: Tensor(shape=torch.Size([2, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        key2: Tensor(shape=torch.Size([2, 5, 5, 6]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([2, 5]),
    device=cpu,
    is_shared=False)
share memory:  TensorDict(
    fields={
        key1: Tensor(shape=torch.Size([2, 5, 1]), device=cpu, dtype=torch.float32, is_shared=True),
        key2: Tensor(shape=torch.Size([2, 5, 5, 6]), device=cpu, dtype=torch.bool, is_shared=True)},
    batch_size=torch.Size([2, 5]),
    device=None,
    is_shared=True)
permute(1, 0):  torch.Size([5, 2]) torch.Size([5, 2, 1])
expand:  torch.Size([3, 2, 5]) torch.Size([3, 2, 5, 1])

您也可以创建嵌套数据

data = TensorDict(
    source={
        "key1": torch.zeros(batch_size, 3),
        "key2": TensorDict(
            source={"sub_key1": torch.zeros(batch_size, 2, 1)},
            batch_size=[batch_size, 2],
        ),
    },
    batch_size=[batch_size],
)
data
TensorDict(
    fields={
        key1: Tensor(shape=torch.Size([5, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        key2: TensorDict(
            fields={
                sub_key1: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
            batch_size=torch.Size([5, 2]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([5]),
    device=None,
    is_shared=False)

重放缓冲区

重放缓冲区是许多 RL 算法中的关键组件。TorchRL 提供了一系列重放缓冲区实现。 大多数基本功能适用于任何数据结构(list、tuples、dict),但要使用重放缓冲区来访问它们的 完全扩展并且具有快速读写访问权限,应首选 TensorDict API。

from torchrl.data import PrioritizedReplayBuffer, ReplayBuffer

rb = ReplayBuffer(collate_fn=lambda x: x)

可以使用 (n=1) 进行加法 (n>1)。

rb.add(1)
rb.sample(1)
rb.extend([2, 3])
rb.sample(3)
[2, 1, 3]

还可以使用 Prioritized Replay Buffers:

rb = PrioritizedReplayBuffer(alpha=0.7, beta=1.1, collate_fn=lambda x: x)
rb.add(1)
rb.sample(1)
rb.update_priority(1, 0.5)

以下是将 replaybuffer 与 data_stack 一起使用的示例。 使用它们可以轻松抽象出多个用例的重放缓冲区的行为。

collate_fn = torch.stack
rb = ReplayBuffer(collate_fn=collate_fn)
rb.add(TensorDict({"a": torch.randn(3)}, batch_size=[]))
len(rb)

rb.extend(TensorDict({"a": torch.randn(2, 3)}, batch_size=[2]))
print(len(rb))
print(rb.sample(10))
print(rb.sample(2).contiguous())

torch.manual_seed(0)
from torchrl.data import TensorDictPrioritizedReplayBuffer

rb = TensorDictPrioritizedReplayBuffer(alpha=0.7, beta=1.1, priority_key="td_error")
rb.extend(TensorDict({"a": torch.randn(2, 3)}, batch_size=[2]))
data_sample = rb.sample(2).contiguous()
print(data_sample)

print(data_sample["index"])

data_sample["td_error"] = torch.rand(2)
rb.update_tensordict_priority(data_sample)

for i, val in enumerate(rb._sampler._sum_tree):
    print(i, val)
    if i == len(rb):
        break
3
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([10, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([2]),
    device=None,
    is_shared=False)
TensorDict(
    fields={
        _weight: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
        a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        index: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int64, is_shared=False)},
    batch_size=torch.Size([2]),
    device=None,
    is_shared=False)
tensor([1, 1])
0 1.0
1 0.28791671991348267
2 0.0

环境

TorchRL 提供了一系列环境包装器和实用程序。

健身房环境

try:
    import gymnasium as gym
except ModuleNotFoundError:
    import gym

from torchrl.envs.libs.gym import GymEnv, GymWrapper, set_gym_backend

gym_env = gym.make("Pendulum-v1")
env = GymWrapper(gym_env)
env = GymEnv("Pendulum-v1")

data = env.reset()
env.rand_step(data)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([]),
            device=None,
            is_shared=False),
        observation: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

更改环境配置

env = GymEnv("Pendulum-v1", frame_skip=3, from_pixels=True, pixels_only=False)
env.reset()

env.close()
del env

from torchrl.envs import (
    Compose,
    NoopResetEnv,
    ObservationNorm,
    ToTensorImage,
    TransformedEnv,
)

base_env = GymEnv("Pendulum-v1", frame_skip=3, from_pixels=True, pixels_only=False)
env = TransformedEnv(base_env, Compose(NoopResetEnv(3), ToTensorImage()))
env.append_transform(ObservationNorm(in_keys=["pixels"], loc=2, scale=1))
TransformedEnv(
    env=GymEnv(env=Pendulum-v1, batch_size=torch.Size([]), device=None),
    transform=Compose(
            NoopResetEnv(noops=3, random=True),
            ToTensorImage(keys=['pixels']),
            ObservationNorm(loc=2.0000, scale=1.0000, keys=['pixels'])))

环境变换

转换的行为类似于 Gym 包装器,但具有更接近 torchvision 的 ' 转换的 API。 有多种变换可供选择。torch.distributions

from torchrl.envs import (
    Compose,
    NoopResetEnv,
    ObservationNorm,
    StepCounter,
    ToTensorImage,
    TransformedEnv,
)

base_env = GymEnv("HalfCheetah-v4", frame_skip=3, from_pixels=True, pixels_only=False)
env = TransformedEnv(base_env, Compose(NoopResetEnv(3), ToTensorImage()))
env = env.append_transform(ObservationNorm(in_keys=["pixels"], loc=2, scale=1))

env.reset()

print("env: ", env)
print("last transform parent: ", env.transform[2].parent)
env:  TransformedEnv(
    env=GymEnv(env=HalfCheetah-v4, batch_size=torch.Size([]), device=None),
    transform=Compose(
            NoopResetEnv(noops=3, random=True),
            ToTensorImage(keys=['pixels']),
            ObservationNorm(loc=2.0000, scale=1.0000, keys=['pixels'])))
last transform parent:  TransformedEnv(
    env=GymEnv(env=HalfCheetah-v4, batch_size=torch.Size([]), device=None),
    transform=Compose(
            NoopResetEnv(noops=3, random=True),
            ToTensorImage(keys=['pixels'])))

矢量化环境

矢量化/并行环境可以提供一些显著的加速。

from torchrl.envs import ParallelEnv


def make_env():
    # You can control whether to use gym or gymnasium for your env
    with set_gym_backend("gym"):
        return GymEnv("Pendulum-v1", frame_skip=3, from_pixels=True, pixels_only=False)


base_env = ParallelEnv(
    4,
    make_env,
    mp_start_method="fork",  # This will break on Windows machines! Remove and decorate with if __name__ == "__main__"
)
env = TransformedEnv(
    base_env, Compose(StepCounter(), ToTensorImage())
)  # applies transforms on batch of envs
env.append_transform(ObservationNorm(in_keys=["pixels"], loc=2, scale=1))
env.reset()

print(env.action_spec)

env.close()
del env
BoundedContinuous(
    shape=torch.Size([4, 1]),
    space=ContinuousBox(
        low=Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.float32, contiguous=True),
        high=Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.float32, contiguous=True)),
    device=cpu,
    dtype=torch.float32,
    domain=continuous)

模块

可以在库中找到多个模块 (utils、models 和 wrappers)。

模型

MLP 模型示例:

from torch import nn
from torchrl.modules import ConvNet, MLP
from torchrl.modules.models.utils import SquashDims

net = MLP(num_cells=[32, 64], out_features=4, activation_class=nn.ELU)
print(net)
print(net(torch.randn(10, 3)).shape)
MLP(
  (0): LazyLinear(in_features=0, out_features=32, bias=True)
  (1): ELU(alpha=1.0)
  (2): Linear(in_features=32, out_features=64, bias=True)
  (3): ELU(alpha=1.0)
  (4): Linear(in_features=64, out_features=4, bias=True)
)
torch.Size([10, 4])

CNN 模型示例:

cnn = ConvNet(
    num_cells=[32, 64],
    kernel_sizes=[8, 4],
    strides=[2, 1],
    aggregator_class=SquashDims,
)
print(cnn)
print(cnn(torch.randn(10, 3, 32, 32)).shape)  # last tensor is squashed
ConvNet(
  (0): LazyConv2d(0, 32, kernel_size=(8, 8), stride=(2, 2))
  (1): ELU(alpha=1.0)
  (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(1, 1))
  (3): ELU(alpha=1.0)
  (4): SquashDims()
)
torch.Size([10, 6400])

TensorDict 模块

一些模块是专门为使用 tensordict 输入而设计的。

from tensordict.nn import TensorDictModule

data = TensorDict({"key1": torch.randn(10, 3)}, batch_size=[10])
module = nn.Linear(3, 4)
td_module = TensorDictModule(module, in_keys=["key1"], out_keys=["key2"])
td_module(data)
print(data)
TensorDict(
    fields={
        key1: Tensor(shape=torch.Size([10, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        key2: Tensor(shape=torch.Size([10, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

模块序列

通过以下方式可以轻松创建模块序列:TensorDictSequential

from tensordict.nn import TensorDictSequential

backbone_module = nn.Linear(5, 3)
backbone = TensorDictModule(
    backbone_module, in_keys=["observation"], out_keys=["hidden"]
)
actor_module = nn.Linear(3, 4)
actor = TensorDictModule(actor_module, in_keys=["hidden"], out_keys=["action"])
value_module = MLP(out_features=1, num_cells=[4, 5])
value = TensorDictModule(value_module, in_keys=["hidden", "action"], out_keys=["value"])

sequence = TensorDictSequential(backbone, actor, value)
print(sequence)

print(sequence.in_keys, sequence.out_keys)

data = TensorDict(
    {"observation": torch.randn(3, 5)},
    [3],
)
backbone(data)
actor(data)
value(data)

data = TensorDict(
    {"observation": torch.randn(3, 5)},
    [3],
)
sequence(data)
print(data)
TensorDictSequential(
    module=ModuleList(
      (0): TensorDictModule(
          module=Linear(in_features=5, out_features=3, bias=True),
          device=cpu,
          in_keys=['observation'],
          out_keys=['hidden'])
      (1): TensorDictModule(
          module=Linear(in_features=3, out_features=4, bias=True),
          device=cpu,
          in_keys=['hidden'],
          out_keys=['action'])
      (2): TensorDictModule(
          module=MLP(
            (0): LazyLinear(in_features=0, out_features=4, bias=True)
            (1): Tanh()
            (2): Linear(in_features=4, out_features=5, bias=True)
            (3): Tanh()
            (4): Linear(in_features=5, out_features=1, bias=True)
          ),
          device=cpu,
          in_keys=['hidden', 'action'],
          out_keys=['value'])
    ),
    device=cpu,
    in_keys=['observation'],
    out_keys=['hidden', 'action', 'value'])
['observation'] ['hidden', 'action', 'value']
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        hidden: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        observation: Tensor(shape=torch.Size([3, 5]), device=cpu, dtype=torch.float32, is_shared=False),
        value: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)

函数式编程 (Ensembling / Meta-RL)

函数调用从未如此简单。使用 、 和 提取参数 将它们替换为 :from_module()to_module()

from tensordict import from_module

params = from_module(sequence)
print("extracted params", params)
extracted params TensorDict(
    fields={
        module: TensorDict(
            fields={
                0: TensorDict(
                    fields={
                        module: TensorDict(
                            fields={
                                bias: Parameter(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
                                weight: Parameter(shape=torch.Size([3, 5]), device=cpu, dtype=torch.float32, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                1: TensorDict(
                    fields={
                        module: TensorDict(
                            fields={
                                bias: Parameter(shape=torch.Size([4]), device=cpu, dtype=torch.float32, is_shared=False),
                                weight: Parameter(shape=torch.Size([4, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                2: TensorDict(
                    fields={
                        module: TensorDict(
                            fields={
                                0: TensorDict(
                                    fields={
                                        bias: Parameter(shape=torch.Size([4]), device=cpu, dtype=torch.float32, is_shared=False),
                                        weight: Parameter(shape=torch.Size([4, 7]), device=cpu, dtype=torch.float32, is_shared=False)},
                                    batch_size=torch.Size([]),
                                    device=None,
                                    is_shared=False),
                                2: TensorDict(
                                    fields={
                                        bias: Parameter(shape=torch.Size([5]), device=cpu, dtype=torch.float32, is_shared=False),
                                        weight: Parameter(shape=torch.Size([5, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
                                    batch_size=torch.Size([]),
                                    device=None,
                                    is_shared=False),
                                4: TensorDict(
                                    fields={
                                        bias: Parameter(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                        weight: Parameter(shape=torch.Size([1, 5]), device=cpu, dtype=torch.float32, is_shared=False)},
                                    batch_size=torch.Size([]),
                                    device=None,
                                    is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False)},
            batch_size=torch.Size([]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

使用 tensordict 的函数调用:

with params.to_module(sequence):
    data = sequence(data)

VMAP

快速执行类似架构的多个副本是快速训练模型的关键。专为实现此目的而量身定制:

from torch import vmap

params_expand = params.expand(4)


def exec_sequence(params, data):
    with params.to_module(sequence):
        return sequence(data)


tensordict_exp = vmap(exec_sequence, (0, None))(params_expand, data)
print(tensordict_exp)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        hidden: Tensor(shape=torch.Size([4, 3, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        observation: Tensor(shape=torch.Size([4, 3, 5]), device=cpu, dtype=torch.float32, is_shared=False),
        value: Tensor(shape=torch.Size([4, 3, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([4, 3]),
    device=None,
    is_shared=False)

专业类

TorchRL 还提供了一些专门的模块,用于对输出值运行检查。

torch.manual_seed(0)
from torchrl.data import Bounded
from torchrl.modules import SafeModule

spec = Bounded(-torch.ones(3), torch.ones(3))
base_module = nn.Linear(5, 3)
module = SafeModule(
    module=base_module, spec=spec, in_keys=["obs"], out_keys=["action"], safe=True
)
data = TensorDict({"obs": torch.randn(5)}, batch_size=[])
module(data)["action"]

data = TensorDict({"obs": torch.randn(5) * 100}, batch_size=[])
module(data)["action"]  # safe=True projects the result within the set
tensor([-1.,  1., -1.], grad_fn=<AsStridedBackward0>)

该类具有预定义的输出键 ():Actor"action"

from torchrl.modules import Actor

base_module = nn.Linear(5, 3)
actor = Actor(base_module, in_keys=["obs"])
data = TensorDict({"obs": torch.randn(5)}, batch_size=[])
actor(data)  # action is the default value

from tensordict.nn import (
    ProbabilisticTensorDictModule,
    ProbabilisticTensorDictSequential,
)

多亏了 API,使用概率模型也变得容易:tensordict.nn

from torchrl.modules import NormalParamExtractor, TanhNormal

td = TensorDict({"input": torch.randn(3, 5)}, [3])
net = nn.Sequential(
    nn.Linear(5, 4), NormalParamExtractor()
)  # splits the output in loc and scale
module = TensorDictModule(net, in_keys=["input"], out_keys=["loc", "scale"])
td_module = ProbabilisticTensorDictSequential(
    module,
    ProbabilisticTensorDictModule(
        in_keys=["loc", "scale"],
        out_keys=["action"],
        distribution_class=TanhNormal,
        return_log_prob=False,
    ),
)
td_module(td)
print(td)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32, is_shared=False),
        input: Tensor(shape=torch.Size([3, 5]), device=cpu, dtype=torch.float32, is_shared=False),
        loc: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32, is_shared=False),
        scale: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)
# returning the log-probability
td = TensorDict({"input": torch.randn(3, 5)}, [3])
td_module = ProbabilisticTensorDictSequential(
    module,
    ProbabilisticTensorDictModule(
        in_keys=["loc", "scale"],
        out_keys=["action"],
        distribution_class=TanhNormal,
        return_log_prob=True,
    ),
)
td_module(td)
print(td)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32, is_shared=False),
        input: Tensor(shape=torch.Size([3, 5]), device=cpu, dtype=torch.float32, is_shared=False),
        loc: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32, is_shared=False),
        sample_log_prob: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
        scale: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)

控制随机性和采样策略是通过上下文管理器实现的,:set_exploration_type

from torchrl.envs.utils import ExplorationType, set_exploration_type

td = TensorDict({"input": torch.randn(3, 5)}, [3])

torch.manual_seed(0)
with set_exploration_type(ExplorationType.RANDOM):
    td_module(td)
    print("random:", td["action"])

with set_exploration_type(ExplorationType.DETERMINISTIC):
    td_module(td)
    print("mode:", td["action"])
random: tensor([[ 0.8728, -0.1334],
        [-0.9833,  0.3494],
        [-0.6887, -0.6402]], grad_fn=<_SafeTanhNoEpsBackward>)
mode: tensor([[-0.1132,  0.1762],
        [-0.3430, -0.2668],
        [ 0.2918,  0.6239]], grad_fn=<_SafeTanhNoEpsBackward>)

使用环境和模块

让我们看看如何组合环境和模块:

from torchrl.envs.utils import step_mdp

env = GymEnv("Pendulum-v1")

action_spec = env.action_spec
actor_module = nn.Linear(3, 1)
actor = SafeModule(
    actor_module, spec=action_spec, in_keys=["observation"], out_keys=["action"]
)

torch.manual_seed(0)
env.set_seed(0)

max_steps = 100
data = env.reset()
data_stack = TensorDict(batch_size=[max_steps])
for i in range(max_steps):
    actor(data)
    data_stack[i] = env.step(data)
    if data["done"].any():
        break
    data = step_mdp(data)  # roughly equivalent to obs = next_obs

tensordicts_prealloc = data_stack.clone()
print("total steps:", i)
print(data_stack)
total steps: 99
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([100]),
            device=None,
            is_shared=False),
        observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([100]),
    device=None,
    is_shared=False)
# equivalent
torch.manual_seed(0)
env.set_seed(0)

max_steps = 100
data = env.reset()
data_stack = []
for _ in range(max_steps):
    actor(data)
    data_stack.append(env.step(data))
    if data["done"].any():
        break
    data = step_mdp(data)  # roughly equivalent to obs = next_obs
tensordicts_stack = torch.stack(data_stack, 0)
print("total steps:", i)
print(tensordicts_stack)
total steps: 99
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([100]),
            device=None,
            is_shared=False),
        observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([100]),
    device=None,
    is_shared=False)
(tensordicts_stack == tensordicts_prealloc).all()
True
torch.manual_seed(0)
env.set_seed(0)
tensordict_rollout = env.rollout(policy=actor, max_steps=max_steps)
tensordict_rollout


(tensordict_rollout == tensordicts_prealloc).all()

from tensordict.nn import TensorDictModule

收藏家

我们还提供了一组数据收集器,它们根据需要自动收集每批任意数量的帧。 它们从单节点、单个工作线程到多节点、多工作线程设置。

from torchrl.collectors import MultiaSyncDataCollector, MultiSyncDataCollector

from torchrl.envs import EnvCreator, SerialEnv
from torchrl.envs.libs.gym import GymEnv

EnvCreator 确保我们可以从一个进程发送到另一个进程 lambda 函数 为了简单起见(单个 worker),我们使用 a (多个 worker)会更适合。

注意

Multiprocessed envs 和 Multiprocessed collector 可以组合使用!

parallel_env = SerialEnv(
    3,
    EnvCreator(lambda: GymEnv("Pendulum-v1")),
)
create_env_fn = [parallel_env, parallel_env]

actor_module = nn.Linear(3, 1)
actor = TensorDictModule(actor_module, in_keys=["observation"], out_keys=["action"])

同步多处理数据收集器

devices = ["cpu", "cpu"]

collector = MultiSyncDataCollector(
    create_env_fn=create_env_fn,  # either a list of functions or a ParallelEnv
    policy=actor,
    total_frames=240,
    max_frames_per_traj=-1,  # envs are terminating, we don't need to stop them early
    frames_per_batch=60,  # we want 60 frames at a time (we have 3 envs per sub-collector)
    device=devices,
)
for i, d in enumerate(collector):
    if i == 0:
        print(d)  # trajectories are split automatically in [6 workers x 10 steps]
    collector.update_policy_weights_()  # make sure that our policies have the latest weights if working on multiple devices
print(i)
collector.shutdown()
del collector
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        collector: TensorDict(
            fields={
                traj_ids: Tensor(shape=torch.Size([2, 3, 10]), device=cpu, dtype=torch.int64, is_shared=False)},
            batch_size=torch.Size([2, 3, 10]),
            device=cpu,
            is_shared=False),
        done: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([2, 3, 10, 3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([2, 3, 10]),
            device=cpu,
            is_shared=False),
        observation: Tensor(shape=torch.Size([2, 3, 10, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([2, 3, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([2, 3, 10]),
    device=cpu,
    is_shared=False)
3

异步多处理数据收集器

此类允许您在模型训练时收集数据。这在 off-policy 设置中特别有用 因为它将推理和模型训练解耦。数据以先就绪先得的方式(工作人员 将他们的结果排队):

collector = MultiaSyncDataCollector(
    create_env_fn=create_env_fn,  # either a list of functions or a ParallelEnv
    policy=actor,
    total_frames=240,
    max_frames_per_traj=-1,  # envs are terminating, we don't need to stop them early
    frames_per_batch=60,  # we want 60 frames at a time (we have 3 envs per sub-collector)
    device=devices,
)

for i, d in enumerate(collector):
    if i == 0:
        print(d)  # trajectories are split automatically in [6 workers x 10 steps]
    collector.update_policy_weights_()  # make sure that our policies have the latest weights if working on multiple devices
print(i)
collector.shutdown()
del collector
del create_env_fn
del parallel_env
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        collector: TensorDict(
            fields={
                traj_ids: Tensor(shape=torch.Size([3, 20]), device=cpu, dtype=torch.int64, is_shared=False)},
            batch_size=torch.Size([3, 20]),
            device=cpu,
            is_shared=False),
        done: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([3, 20, 3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([3, 20]),
            device=cpu,
            is_shared=False),
        observation: Tensor(shape=torch.Size([3, 20, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([3, 20, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([3, 20]),
    device=cpu,
    is_shared=False)
3

目标

Objectives 是编写新算法时的主要切入点。

from torchrl.objectives import DDPGLoss

actor_module = nn.Linear(3, 1)
actor = TensorDictModule(actor_module, in_keys=["observation"], out_keys=["action"])


class ConcatModule(nn.Linear):
    def forward(self, obs, action):
        return super().forward(torch.cat([obs, action], -1))


value_module = ConcatModule(4, 1)
value = TensorDictModule(
    value_module, in_keys=["observation", "action"], out_keys=["state_action_value"]
)

loss_fn = DDPGLoss(actor, value)
loss_fn.make_value_estimator(loss_fn.default_value_estimator, gamma=0.99)
data = TensorDict(
    {
        "observation": torch.randn(10, 3),
        "next": {
            "observation": torch.randn(10, 3),
            "reward": torch.randn(10, 1),
            "done": torch.zeros(10, 1, dtype=torch.bool),
        },
        "action": torch.randn(10, 1),
    },
    batch_size=[10],
    device="cpu",
)
loss_td = loss_fn(data)

print(loss_td)

print(data)
TensorDict(
    fields={
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        pred_value: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
        pred_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        target_value: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
        target_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        td_error: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([10, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([10, 3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([10, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
            batch_size=torch.Size([10]),
            device=cpu,
            is_shared=False),
        observation: Tensor(shape=torch.Size([10, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        td_error: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([10]),
    device=cpu,
    is_shared=False)

安装库

该库位于 PyPI 上:pip install torchrl 有关更多信息,请参阅 README

贡献

我们正在积极寻找贡献者和早期用户。如果你在 RL(或者只是好奇),试试吧!给我们反馈:什么会让 TorchRL 是它满足研究人员需求的程度。要做到这一点,我们需要他们的意见! 由于库刚刚起步,现在是你按照自己的方式塑造它的好时机!

有关详细信息,请参阅 贡献 指南

脚本总运行时间:(2 分 32.651 秒)

估计内存使用量:322 MB

由 Sphinx-Gallery 生成的图库

文档

访问 PyTorch 的全面开发人员文档

查看文档

教程

获取面向初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并解答您的问题

查看资源