torch.special¶
The torch.special module, modeled after SciPy’s special module.
Functions¶
- 
torch.special.entr(input, *, out=None) → Tensor¶
- Computes the entropy on - input(as defined below), elementwise.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> a = torch.arange(-0.5, 1, 0.5) >>> a tensor([-0.5000, 0.0000, 0.5000]) >>> torch.special.entr(a) tensor([ -inf, 0.0000, 0.3466]) 
 
- 
torch.special.erf(input, *, out=None) → Tensor¶
- Computes the error function of - input. The error function is defined as follows:- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.special.erf(torch.tensor([0, -1., 10.])) tensor([ 0.0000, -0.8427, 1.0000]) 
- 
torch.special.erfc(input, *, out=None) → Tensor¶
- Computes the complementary error function of - input. The complementary error function is defined as follows:- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.special.erfc(torch.tensor([0, -1., 10.])) tensor([ 1.0000, 1.8427, 0.0000]) 
- 
torch.special.erfcx(input, *, out=None) → Tensor¶
- Computes the scaled complementary error function for each element of - input. The scaled complementary error function is defined as follows:- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.special.erfcx(torch.tensor([0, -1., 10.])) tensor([ 1.0000, 5.0090, 0.0561]) 
- 
torch.special.erfinv(input, *, out=None) → Tensor¶
- Computes the inverse error function of - input. The inverse error function is defined in the range as:- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.special.erfinv(torch.tensor([0, 0.5, -1.])) tensor([ 0.0000, 0.4769, -inf]) 
- 
torch.special.expit(input, *, out=None) → Tensor¶
- Computes the expit (also known as the logistic sigmoid function) of the elements of - input.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> t = torch.randn(4) >>> t tensor([ 0.9213, 1.0887, -0.8858, -1.7683]) >>> torch.special.expit(t) tensor([ 0.7153, 0.7481, 0.2920, 0.1458]) 
- 
torch.special.expm1(input, *, out=None) → Tensor¶
- Computes the exponential of the elements minus 1 of - input.- Note - This function provides greater precision than exp(x) - 1 for small values of x. - Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.special.expm1(torch.tensor([0, math.log(2.)])) tensor([ 0., 1.]) 
- 
torch.special.exp2(input, *, out=None) → Tensor¶
- Computes the base two exponential function of - input.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.special.exp2(torch.tensor([0, math.log2(2.), 3, 4])) tensor([ 1., 2., 8., 16.]) 
- 
torch.special.gammaln(input, *, out=None) → Tensor¶
- Computes the natural logarithm of the absolute value of the gamma function on - input.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> a = torch.arange(0.5, 2, 0.5) >>> torch.special.gammaln(a) tensor([ 0.5724, 0.0000, -0.1208]) 
- 
torch.special.gammainc(input, other, *, out=None) → Tensor¶
- Computes the regularized lower incomplete gamma function: - where both and are weakly positive and at least one is strictly positive. If both are zero or either is negative then . in the equation above is the gamma function, - See - torch.special.gammaincc()and- torch.special.gammaln()for related functions.- Supports broadcasting to a common shape and float inputs. - Note - The backward pass with respect to - inputis not yet supported. Please open an issue on PyTorch’s Github to request it.- Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> a1 = torch.tensor([4.0]) >>> a2 = torch.tensor([3.0, 4.0, 5.0]) >>> a = torch.special.gammaincc(a1, a2) tensor([0.3528, 0.5665, 0.7350]) tensor([0.3528, 0.5665, 0.7350]) >>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2) tensor([1., 1., 1.]) 
- 
torch.special.gammaincc(input, other, *, out=None) → Tensor¶
- Computes the regularized upper incomplete gamma function: - where both and are weakly positive and at least one is strictly positive. If both are zero or either is negative then . in the equation above is the gamma function, - See - torch.special.gammainc()and- torch.special.gammaln()for related functions.- Supports broadcasting to a common shape and float inputs. - Note - The backward pass with respect to - inputis not yet supported. Please open an issue on PyTorch’s Github to request it.- Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> a1 = torch.tensor([4.0]) >>> a2 = torch.tensor([3.0, 4.0, 5.0]) >>> a = torch.special.gammaincc(a1, a2) tensor([0.6472, 0.4335, 0.2650]) >>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2) tensor([1., 1., 1.]) 
- 
torch.special.polygamma(n, input, *, out=None) → Tensor¶
- Computes the derivative of the digamma function on - input. is called the order of the polygamma function.- Note - This function is implemented only for nonnegative integers . - Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> a = torch.tensor([1, 0.5]) >>> torch.special.polygamma(1, a) tensor([1.64493, 4.9348]) >>> torch.special.polygamma(2, a) tensor([ -2.4041, -16.8288]) >>> torch.special.polygamma(3, a) tensor([ 6.4939, 97.4091]) >>> torch.special.polygamma(4, a) tensor([ -24.8863, -771.4742]) 
 
- 
torch.special.digamma(input, *, out=None) → Tensor¶
- Computes the logarithmic derivative of the gamma function on input. - Parameters
- input (Tensor) – the tensor to compute the digamma function on 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Note - This function is similar to SciPy’s scipy.special.digamma. - Note - From PyTorch 1.8 onwards, the digamma function returns -Inf for 0. Previously it returned NaN for 0. - Example: - >>> a = torch.tensor([1, 0.5]) >>> torch.special.digamma(a) tensor([-0.5772, -1.9635]) 
- 
torch.special.psi(input, *, out=None) → Tensor¶
- Alias for - torch.special.digamma().
- 
torch.special.i0(input, *, out=None) → Tensor¶
- Computes the zeroth order modified Bessel function of the first kind for each element of - input.- Parameters
- input (Tensor) – the input tensor 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.i0(torch.arange(5, dtype=torch.float32)) tensor([ 1.0000, 1.2661, 2.2796, 4.8808, 11.3019]) 
- 
torch.special.i0e(input, *, out=None) → Tensor¶
- Computes the exponentially scaled zeroth order modified Bessel function of the first kind (as defined below) for each element of - input.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> torch.special.i0e(torch.arange(5, dtype=torch.float32)) tensor([1.0000, 0.4658, 0.3085, 0.2430, 0.2070]) 
 
- 
torch.special.i1(input, *, out=None) → Tensor¶
- Computes the first order modified Bessel function of the first kind (as defined below) for each element of - input.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> torch.special.i1(torch.arange(5, dtype=torch.float32)) tensor([0.0000, 0.5652, 1.5906, 3.9534, 9.7595]) 
 
- 
torch.special.i1e(input, *, out=None) → Tensor¶
- Computes the exponentially scaled first order modified Bessel function of the first kind (as defined below) for each element of - input.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> torch.special.i1e(torch.arange(5, dtype=torch.float32)) tensor([0.0000, 0.2079, 0.2153, 0.1968, 0.1788]) 
 
- 
torch.special.logit(input, eps=None, *, out=None) → Tensor¶
- Returns a new tensor with the logit of the elements of - input.- inputis clamped to [eps, 1 - eps] when eps is not None. When eps is None and- input< 0 or- input> 1, the function will yields NaN.- Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> a = torch.rand(5) >>> a tensor([0.2796, 0.9331, 0.6486, 0.1523, 0.6516]) >>> torch.special.logit(a, eps=1e-6) tensor([-0.9466, 2.6352, 0.6131, -1.7169, 0.6261]) 
- 
torch.special.logsumexp(input, dim, keepdim=False, *, out=None)¶
- Alias for - torch.logsumexp().
- 
torch.special.log1p(input, *, out=None) → Tensor¶
- Alias for - torch.log1p().
- 
torch.special.log_softmax(input, dim, *, dtype=None) → Tensor¶
- Computes softmax followed by a logarithm. - While mathematically equivalent to log(softmax(x)), doing these two operations separately is slower and numerically unstable. This function is computed as: - Parameters
- input (Tensor) – input 
- dim (int) – A dimension along which log_softmax will be computed. 
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is cast to- dtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None.
 
 - Example::
- >>> t = torch.ones(2, 2) >>> torch.special.log_softmax(t, 0) tensor([[-0.6931, -0.6931], [-0.6931, -0.6931]]) 
 
- 
torch.special.multigammaln(input, p, *, out=None) → Tensor¶
- Computes the multivariate log-gamma function with dimension element-wise, given by - where and is the Gamma function. - All elements must be greater than , otherwise an error would be thrown. - Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> a = torch.empty(2, 3).uniform_(1, 2) >>> a tensor([[1.6835, 1.8474, 1.1929], [1.0475, 1.7162, 1.4180]]) >>> torch.special.multigammaln(a, 2) tensor([[0.3928, 0.4007, 0.7586], [1.0311, 0.3901, 0.5049]]) 
- 
torch.special.ndtr(input, *, out=None) → Tensor¶
- Computes the area under the standard Gaussian probability density function, integrated from minus infinity to - input, elementwise.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> torch.special.ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3])) tensor([0.0013, 0.0228, 0.1587, 0.5000, 0.8413, 0.9772, 0.9987]) 
 
- 
torch.special.ndtri(input, *, out=None) → Tensor¶
- Computes the argument, x, for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to - input, elementwise.- Note - Also known as quantile function for Normal Distribution. - Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> torch.special.ndtri(torch.tensor([0, 0.25, 0.5, 0.75, 1])) tensor([ -inf, -0.6745, 0.0000, 0.6745, inf]) 
 
- 
torch.special.log_ndtr(input, *, out=None) → Tensor¶
- Computes the log of the area under the standard Gaussian probability density function, integrated from minus infinity to - input, elementwise.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> torch.special.log_ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3])) tensor([-6.6077 -3.7832 -1.841 -0.6931 -0.1728 -0.023 -0.0014]) 
 
- 
torch.special.round(input, *, out=None) → Tensor¶
- Alias for - torch.round().
- 
torch.special.sinc(input, *, out=None) → Tensor¶
- Computes the normalized sinc of - input.- Parameters
- input (Tensor) – the input tensor. 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> t = torch.randn(4) >>> t tensor([ 0.2252, -0.2948, 1.0267, -1.1566]) >>> torch.special.sinc(t) tensor([ 0.9186, 0.8631, -0.0259, -0.1300]) 
 
- 
torch.special.softmax(input, dim, *, dtype=None) → Tensor¶
- Computes the softmax function. - Softmax is defined as: - It is applied to all slices along dim, and will re-scale them so that the elements lie in the range [0, 1] and sum to 1. - Parameters
- input (Tensor) – input 
- dim (int) – A dimension along which softmax will be computed. 
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is cast to- dtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None.
 
 - Examples::
- >>> t = torch.ones(2, 2) >>> torch.special.softmax(t, 0) tensor([[0.5000, 0.5000], [0.5000, 0.5000]]) 
 
- 
torch.special.xlog1py(input, other, *, out=None) → Tensor¶
- Computes - input * log1p(other)with the following cases.- Similar to SciPy’s scipy.special.xlog1py. - Note - At least one of - inputor- othermust be a tensor.- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> x = torch.zeros(5,) >>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')]) >>> torch.special.xlog1py(x, y) tensor([0., 0., 0., 0., nan]) >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([3, 2, 1]) >>> torch.special.xlog1py(x, y) tensor([1.3863, 2.1972, 2.0794]) >>> torch.special.xlog1py(x, 4) tensor([1.6094, 3.2189, 4.8283]) >>> torch.special.xlog1py(2, y) tensor([2.7726, 2.1972, 1.3863]) 
- 
torch.special.xlogy(input, other, *, out=None) → Tensor¶
- Computes - input * log(other)with the following cases.- Similar to SciPy’s scipy.special.xlogy. - Note - At least one of - inputor- othermust be a tensor.- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> x = torch.zeros(5,) >>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')]) >>> torch.special.xlogy(x, y) tensor([0., 0., 0., 0., nan]) >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([3, 2, 1]) >>> torch.special.xlogy(x, y) tensor([1.0986, 1.3863, 0.0000]) >>> torch.special.xlogy(x, 4) tensor([1.3863, 2.7726, 4.1589]) >>> torch.special.xlogy(2, y) tensor([2.1972, 1.3863, 0.0000]) 
- 
torch.special.zeta(input, other, *, out=None) → Tensor¶
- Computes the Hurwitz zeta function, elementwise. - Parameters
 - Note - The Riemann zeta function corresponds to the case when q = 1 - Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example::
- >>> x = torch.tensor([2., 4.]) >>> torch.special.zeta(x, 1) tensor([1.6449, 1.0823]) >>> torch.special.zeta(x, torch.tensor([1., 2.])) tensor([1.6449, 0.0823]) >>> torch.special.zeta(2, torch.tensor([1., 2.])) tensor([1.6449, 0.6449])